4. NONLINEAR DYNAMICAL SYSTEMS

4.1 A New Method to Embed Time

Series Data

~We have demonstrated how to calculate the
derivatives of a discretely sampled data, far more
accurately than the usual central difference formulae
do. This was accomplished by setting the Taylor’s
series formulation in a matrix form and then using
singular value decomposition. These derivatives are
used to generate a set of vectors from scalar data.
This method has certain advantages over the
conventional method of embedding data. Using the
example of a numerically generated data, it has
been shown how to obtain state space portraits from
sampled data (for example, see Fig. 4.1.7 which
shows the results for the Lorenz data). It is also
shown that this method is robust in the sense that it

Fig. 4.1.1 Lorenz's equaton is usually stated in terms of the
variables X, Y and Z. This figure shows a significantly improved
technique of finding alternative state space variable Y2 and
Z2 from X alone, (without any additional knowledge about the
equation or its parameters). These variable are homeomorphs
of the usual Y and Z and are an example of a multitude of
alternative phase space representations (p-time step).

can tolerate and in fact, suppress a small amount
of random noise (as shown in Fig. 4.1.2).
(PG. Vaidya)

4.2 Cryptology Based on Chaotic
Synchronization

There are two properties of chaos, which make it
an attractive medium for cryptology. The first of
these is well known: a chaotic signal shares many
properties with random signals. This makes it
possible to use a chaotic signature to generate
uncorrelated keys for encryption. The second
property (discovered only in this decade) is that
some chaotic equations can be synchronized with
others, by passing only partial information from one
to another. We have shown that the synchronization
does not work if the parameters in the equation are
wrongly guessed and that these properties can be

Fig.4.1.2.The P curve represents the noise added to the signal
and the Q curve shows the remaining noise after the advanced
embedding procedure has been carried out. The significant
reduction in noise is a side benefit of the procedure (p-time
step).
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Fig. 4.2.1. The synchronization index (Sl) at each step (p).
When this index is acceptably close to zero, we know that the
synchronization is taking place. This has been used to speed
up the “hook up” of the two systems.

used to encrypt and decode messages. Recently,
using the ideas of the earlier section (4.1), we have
developed a technique to calculate the synchroni-
zation index (Sl), which tells the receiver if
synchronization has indeed taken place, and to
speed up the synchronization so that the messages
can be speeded up. Fig. 4.2.1 above shows the
convergence of the synchronization index. Once it
gets below a certain threshold value, error free
communication becomes possible.

(PG. Vaidya)
4.3 Identifying Unknown Parameters in a
Dynamical System

Another recent development deals with the
possibility of rapidly identifying parameters of, for
example, the Lorenz equation (f,p). It has been
shown, that the various state space derivatives (P,
Q, R, S) of the data bear the following relationship:
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Using the method referred to in the equation
alongside, we can accurately find P, Q, R and S
and then using a simple nonlinear solver find
the parameters. This is quite useful in many
dynamical systems applications, including
cryptanalysis.

(PG. Vaidya)

4.4 Synchroni.sation of Chaotic
Meta-populations in a Cascade of
Coupled Patches

The aspects of nonlinear dynamical systems and
chaotic dynamics have a lot of potential applications
notonly in physics but also in various other branches
of science such as chemistry, biology, ecology, etc.
Here we apply one such aspect of synchronisation
of chaos to ecological modelling especially in
studying the population dynamics of a cascade of
coupled patches.

Most populations in nature are made up of a number
of isolated patches of subpopulations which are
subjected to migration. Migration is a common
ecological process by which the size of the meta-
population in different patches may change. Much
attention has recently been focused on studying
such spatial effects, like migration, on population
dynamics. The dynamics of metapopulations in two
patches undergoing migration among each other
has commonly been analysed by using two coupled
logistic map maodels (Fig.4.4.1a). Considering two
sets of such coupled patches which are all
exhibiting chaotic oscillations, we have shown that
the chaotic metapopulations of the second set of
patches X, Y, (response system) can be
synchronised with that of the first set of patches X,
Y, (drive system) by using a simple synchronisa-
tion technique which requires a selective migration
only from the drive system patches (Fig. 4.4.1b).
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Fig. 4.4.1. Coupled logistic map models.

We have used a simple variant of the Pecora and
Carroll synchronisation technique for this purpose.
After synchronisation, the populations of the
response system patches exhibit chaotic oscillations
which are exactly similar to that of the drive system
patches, irrespective of their initial population sizes.
Fig.4.4.2 shows that the chaotic metapopulations
of the response system patch X, (see Fig. 4.4.2b)
is completely synchronised with that of the drive
system patch X, (see Fig. 4.4.2a) after a shortinitial
transient. The difference (X, — X,) in the
metapopulations of the two patches at every
generation becomes zero after a few generations,
as shown in Fig. 4.4.2c, which means that the
chaotic metapopulations attain synchronisation
resulting in identical chaotic oscillations in both the
patches X, and X,. Itis interesting to note that the
metapopulations in the other patches Y, and Y, are
also synchronised simultaneously and exhibit
similar chaotic oscillations.

Further, it has been shown that not only can two
such sets of coupled patches be synchronized but
also cascading of many such sets of coupled
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Fig. 4.4.2. Evolution of metapopulation.

patches, in a similar way (Fig. 4.4.7¢), results in
synchronisation of their common signals. The
synchronisation of chaotic metapopulations has an
important implication in that it allows one to study
the dynamics of chaotic metapopulations of a
collection of many sets of coupled patches by simply
analysing the behaviour of one set of patches alone.
Finally, it is also observed that addition of small

_external noise can be effective in synchronisation
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when slight inhomogeneities in the environment
affect the synchronisation procedure, and is
therefore more biologically realistic.

(S. Parthasarathy and J. Guemez*
(*Departamento de Fisica Aplicada, Universidad
de Cantabria, Santander, Spain)).



4.5 Experimental Forecasts of All-India
Monthly and Summer Monsoon Rain-
fall Using Neural Network

Continuing our efforts at long-range forecast of
rainfall patterns, the neural network forecast of all-
India summer monsoon rainfall (ISMR) is being
extended to forecast an all-India monthly rainfall
(AIMR). As in the case of ISMR, the basic tool used
is the cognitive network (CN) developed at C-
MMACS. Since the development of the cognitive
network, we have followed a use-and-probe strategy
with the neural network (NN) forecast toll. In
particular, we believe that while many of the
shortcomings of NN in general and cognitive
network in particular, need to be addressed at
conceptual and theoretical levels, the capabilities
and the scope of applicability of CN as a forecast
tool also need to be explored. These two efforts
can, and should, feedback upon each other, leading

" to better understanding and further development.

With this philosophy in the background, we have
been generating experimental forecasts of ISMR
for the last four years. It is noteworthy that all the
three forecasts for 1995, 1996 and 1997 were
generated well ahead of the monsoon season, and
were found to be of good quality. The CN forecast
for 1997 ISMR was, for example, 945mm (or 101%
of long term mean) while the observed value was
about 102%. The experimental forecast for 1998 is
945mm (i.e. 107%). The forecast for 1998 assumes
further significance since it is being made in 1996,
two years in advance. These successes along with
the hindcast skill achieved during our investigation
suggest it to be worthwhile to pursue this approach.
The work is now in progress to extend the
methodology to higher temporal and spatial
resolutions.

(P Goswami)



