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4. NONLINEAR DYNAMICAL SYSTEMS

4.1. Finding Parameters and Initial
Conditions

We have recently developed a method to accurately
calculate derivatives of a time series data.  This ability can
be used to identify unknown parameters if the general form
of equations is known. For example,  in Lorenz�s equations,

if P(t) is the observed x signal and, Q, R, and S are the
progressively higher derivatives, we can easily show the
following relationship.

where g = 1 /s.

Now, we can accurately  find Q,R and S only from the
knowledge of P.  So, all these quantities can be evaluated
at a few consecutive points to arrive at a set of
simultaneous equations with the parameters as the
unknowns.  The example below shows a solution by using
Mathcad:

(- 3451.6 - 229.20.b )g  + b..( r + 22.179) + 281.19 = 0

(- 4701.7 - 270.11.b )g  + b..( r + 25.558) + 408.04 = 0

(- 7075.5 - 328.24.b )g  + b..( r + 30.755) + 647.19 = 0

(- 6123.6 - 145.39.b )g  + b..( r + 20.968) + 563.52 = 0

(- 12334 - 1421.49.b )g  + b..( r + 39.463) + 1174.7 = 0

The parameters with minimum error obtained are:

Mineer ( b ,r,s ,) = (2.657, 24.837, 0.1)

Once the parameters are known, the initial conditions can
also be obtained quite accurately as

y0 = 2.5
z0  = 24.087

These results are quite important in modelling and
simulation and in cryptography.   It is worth noting that the
simplicity of this method is somewhat deceptive.
Alternative methods trying to accomplish this via a least
square type of methods have proven to be highly complex
and time consuming.

(P.G. Vaidya)

4.2 Dynamics of Marine Ecosystem Models

It has been reported in the literature that marine ecosystem
models display limit cycles under certain conditions,
especially when there is abundance of nutrients. It has
also been suggested that introduction of nonlinear mortality
and/or self-grazing terms for zooplankton suppresses such
limit cycles. These type of oscillations of the models are
often believed to be unrealistic. This issue was examined
with the help of a class of basic models having the least
number of state variables and yet incorporate some of the
essential biology. The model was obtained by describing
the biomass of all autotrophs as the variable Phytoplankton
(P), the biomass of heterotrophs as the variable
Zooplankton (Z), and the mass of nutrients as the variable
N. In the present study, the growth terms of phytoplankton
and zooplankton were modelled using Michaelis-Menten
law, mortality of phytoplankton was taken to be linear,
mortality of zooplankton was modelled as a sum of linear
and quadratic terms and self-grazing of zooplankton was
also incorporated. When more than one food type is
available for  growth, different formulations of growth and
grazing terms are possible, like nonswitching, switching
etc. Qualitative aspects of the dynamics of the model can
be readily understood with the help of a phase plane
diagram.  Limit cycles arise when the equilibrium point
becomes unstable. Stability of the equilibrium point was
determined from the sign of the trace of the Jacobian.
When the trace is positive, the equilibrium point is unstable
and leads to limit cycles in our models. The effect of
quadratic mortality term on the trace of the Jacobian at
the equilibrium point was studied keeping all the other
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model parameters fixed and it was found that the value of
the trace  decreased when the quadratic mortality term
was increased leading to stability of the equilibrium point
(Fig.4.2.1). Similarly, when self-grazing of zooplankton was
introduced, limit cycles were suppressed. It was shown
using phase plane analysis that even a rather small
nonlinear term describing nonlinearity in mortality or self-
grazing of zooplankton can effectively alter the linear
stability conditions of this class of ecosystem models and
thereby suppress the limit cycles.

(M.K. Sharada)

4.3 Neural Network Forecasts of All-India
Monthly and Summer Monsoon
Rainfall

In view of the critical importance of knowledge of rainfall
patterns in areas like agricultural planning, accurate and
long range forecast of rainfall is of vital importance.  Given
the present status  of prediction algorithms, this requires
persistent effort and perhaps a multi-pronged strategy
using different techniques and methodologies. One such
promising forecasting tool is neural networks (NN), which
we have been exploring and developing now for several
years. In particular, a generalized NN, termed cognitive
network (CN), was developed and tested for hindcast skill
in long range forecast of all India summer monsoon rainfall
(ISMR).

Subsequent to the development of CN,  we have followed
use-and-probe strategy with  NN forecasts.  In particular,
we believe that, while many of the shortcomings of NN in
general and, CN in particular, need to be addressed at
conceptual and theoretical level, the capabilities and the
scope of applicability of CN as a forecast tool  need to be
explored alongside. These two efforts can, and should,
feedback upon each other, leading to better understanding
and further development.

With this philosophy in the background, we have been
generating experimental forecasts of ISMR for the last four
years. It is noteworthy that all the three forecasts for 1996,
1997 and 1998 were generated well ahead of the monsoon
season, and were found to be of good quality. The CN
forecast for 1998 ISMR was, for example, 945 mm (or
107% of long term mean) while the observed value was
about 106%. The success  for 1998 assumes further
significance since it was made in 1996 two years in
advance. These successes, along with the hindcast skill
achieved during our investigation, suggest it to be
worthwhile to pursue this approach. We have been thus
encouraged to investigate the forecast skill of CN for all
India monthly rainfall (AIMR). Table 4.3.1 shows the
performance of CN in AIMR forecast from seventy four
hindcast experiments. We also record in Table 4.3.2 the
CN  forecasts of ISMR for 1999 and 2000.

These forecasts should be interpreted as ensemble
forecasts where, in the present case, an ensemble is
formed by generating forecasts through a number of CN
configurations with comparable hindcast skill. The inputs
to the networks consist of past rainfall data of appropriate
time scale (e.g. past ISMR data and past AIMR data for
the corresponding forecasts).  Error back propagation
algorithm was employed and, for ISMR forecast, 50 points
of a 123 year data set was used to train the CN.

The following parameters were used to evaluate the
performance of hindcast skill.

1. Success rate:

where n is the total number of predictions and n1 is the
number of predictions out of phase. Thus for n1=0, the
success rate is 100%, while for n=n1 the success rate is
0%.

Fig. 4.2.1. Effect of nonlinear mortality coefficient (W2) on the trace of

the Jacobian (T) for two values of asymptotic growth rate (Vp) of

phytoplankton.
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2. Average absolute error:

with

where Xp is the predicted value and Xt  is the target value.

The other evaluation parameters are :

and

Bias = M
o 
- M

p

where Mp and Mo are the mean of the predicted and
observed values and sp and so are the standard
deviations (SD) of the predicted and observed values
respectively.

The ensemble standard deviations in this case provide a

measure of the uncertainty in the forecasts. A similar
methodology was adopted for generating the forecasts for
1997 and 1998. Thus, according to these forecasts, the
year 2000 is likely to be a deficit monsoon year.  However,
the forecast for 2000 shall be updated should our forecast
for 1999 turn out to be appreciably different from the
observed value (no updating was necessary for 1998 as
our forecast for 1997 turned out to be close to the observed
value).

(K. Rameshan and P. Goswami)

4.4 Computational Biology

4.4.1 DNA sequence analysis of
complete bacterial genomes

The sequences of  a l l  the bacter ia l  genomes
sequanced so far were analysed to understand the
distribution of repetitive DNA sequences and, in
particular, the polypurine/polypyrimidine repeats.
These repeats are of interest since they have been
shown to influence gene expression in cis and have
also been found at regulatory regions of genes.
Consistent with our earlier results on the yeast
genome, a  majority of the bacterial genomes also
showed asymmetry in the distribution of polypurines
and polypyrimidines between the coding and non-
coding strands. In addition, the knowledge that this
asymmetry can show a wide range of variation was
an important outcome of this analysis. This has also
helped strengthen the hypothesis that repetitive
sequences in DNA can have important biological
roles.  A brief summary of these results is shown in
Table 4.4.1.

(Sowmya Raghavan)

Table 4.3.1
Performance of CN  in AIMR forecast

Evaluation Month
Parameters Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

<e> (mm) 9.9 9.8 7.7 7.3 16.2 54 65 53 44 37 24 9.7
m (%) 50 48 36 60 43 46 48 43 48 38 45 46
g

1
0.8 0.9 1 1 1 1 1 1 1 1 0.8 1

g2 0.7 0.9 1 1 1 0.7 0.6 0.9 0.8 0.8 0.8 1
Bias -2.5 -1 2.6 1.7 5 19.2 6.1 13.3 10.7 -1.2 -8.1 1.3

Table 4.3.2
The CN forecasts of ISMR for 1999 and 2000

Year Ensemble mean    Ensemble  SD
(mm) (mm)

1999 861 43
2000 793 30
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4.4.2 Analysis of Mycobacterium
tuberculosis genome to identify
novel gene functions

Apart from the analysis of bacterial genomes as a whole,
efforts have also been made to subject the genome of M.
tuberculosis to intensive sequence analysis. Since the
report of the complete genome sequence in the literature,
no new functions have been reported. We have analysed
all the open reading frames of unknown function using the
similarity search algorithm BLAST. This exercise revealed
that at least ten new functions can be discerned. Since
some of these functions are enzymes, the possibility of
using these as potential drug targets emerges. The process
of validating these new functions from a structural point of
view, using the technique of  homology modelling is now
in progress. (Sowmya Raghavan)

4.5 Non-linear Dynamical Applications to
Land-Atmosphere Interactions

The important role played by ground hydrology in the

dynamics of monsoonal precipitation has been emphasized
by a number of studies.  While appropriate representation
of ground hydrological processes is imperative for improved
range and quality of rainfall forecast, its modelling is
complicated by the interplay of a number of stochastic and
non-linear processes.  To gain insight into the behavior and
hence modelling of ground hydrological processes, we have
considered a statistical dynamical model representing the
surface hydrology of large continental regions.  The model
represents rainfall rate Ep, moisture infiltration function f (s)
and evapotranspiration rate E(s) as functions of moisture
s.  The evapotranspiration rate and infiltration rate are
parameterized as

E(s) = Ep s
c

and
f (s) = 1 - e sr

where c, e  and  r are nonnegative constants.

Non-linear and stochastic analysis of the soil moisture
balance equation yields two fixed points akin to floods and
droughts as reported in the literature.  Stochastic

Table 4.4.1
Distribution of polypurine (polyR) and pyrimidine (polyY) repeats in bacterial genomes

Organism* Total polyR in poly Y in Strand polyR in polyY
polyR coding coding bias1 non- in non-
and regions regions coding coding
polyY regions regions

M.genitalium (580) 69 40 15 2.7 5 9
M.pneumoniae (816) 80 46 9 5.1 13 12
B.burgdorferri (911) 167 127 32 3.9 4 4
C.trachomatis (1042) 374 137 160 0.85 38 39
R.prowazekeii (1111) 71 52 6 8.7 8 5
T.pallidum (1138) 251 91 125 0.73 18 17
A.aeolicus (1551) 1351 1075 152 7.07 59 65
M.jannaschii (1665) 735 696 8 87 13 18
H.pylori (1667) 315 232 35 6.1 30 18
P.horikoshii (1738) 992 840 140 6.0 5 7
M.thermoautotrophicum (1751) 315 250 37 6.7 15 13
H.influenzae (1830) 115 57 21 2.7 17 20
A.fulgidus (2178) 1005 867 93 9.1 25 20
Synechocystis sp.(3573) 502 253 143 1.76 62 44
B.subtilis (4215) 856 543 83 6.8 111 119
M.tuberculosis (4412) 21 8 4 2 6 3
E.coli (4639) 198 81 38 2.1 37 42

1 Strand bias refers to the ratio, polyR /polyY, in coding regions.
* Size in  kilobases is given in brackets.
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fluctuations in the forcing of the soil moisture balance
equation lead to noise induced transitions from one stable
mode to another.  This is the hydrologic situation whereby
a region may experience prolonged periods of drought and
then there is an abrupt change to above average conditions
until another dry spell occurs.  Such persistent behaviour
will have two stable modes: dry and wet. During each run
there are stochastic fluctuations about the local mean.  The
regional hydrology may shift from one mode to another by
one of these stochastic fluctuations. This occurs if the
forcing is large enough to free the regional hydrologic
balance away from one stable mode and lock it onto
another.

We have estimated sensitivity of the dry/wet states due to
variation in infiltration function parameter r. Fig. 4.5.1 shows
the probability density function (PDF) of soil moisture for
different infiltration  parameters r and for different intensities
of environmental fluctuations w.   For w = 0.1, the PDF
shows only one stable mode for all f. This shows that when

the intensity of fluctuation  is low, the system coincides
with deterministic case.  When w is increased to 0.5, for
r=1, PDF has only one mode  which is shifted to left, i.e.
towards dry mode. The case r=2 shows two stable modes,
dry and wet. This shows that when the intensity of
fluctuations is more, noise induced transitions occur.  The
system experiences two modes for r=3 also.  When the
intensity is increased to 1.0, the three cases of r=1,2 and
3 show  two stable modes.  The wet mode for r=2 and 3
are more prominent than the case for r=1. It is also
observed that, as the intensity of fluctuations is increased,
the dry mode is shifted towards left and wet mode is shifted
towards right.  It appears necessary, therefore, to include
appropriate representation of (short term) stochastic
processes in the modelling of ground hydrological
processes in models of climate.

(R. Bhagyalakshmi, P. Goswami and
R.N. Singh)

Fig. 4.5.1. Behaviour of the soil moisture for different infiltration functions and different intensity of environmental fluctuations (s) as indicated

in the panels.


