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3.1 Computational Structural Mechanics

3.1.1 Modelling of Nonlinear Dynamics

Nonlinear vibration problems of beams and plates have been
approached using finite element modelling for quite some
time now. The nonlinear stiffness terms are understandably
difficult to represent and extra-variational simplifications
are often resorted to. Two such simplifications are found
frequently in the literature because they considerably
simplify the computation of the non-linear stiffness terms
from the non-linear strain energy terms. A quasi-linearisation
approach allows a simple representation of the non-linear
terms. Alternatively, the neglect of inplane deformation terms
allows the stiffness matrix to be formulated in terms of
transverse deflections and section rotation terms alone.

Two different finite element models are developed,
incorporating all possible combinations of the extra-variational
simplifications for various commonly found boundary
conditions. For each element, four versions appear -

VC - Variationally correct model with no simplification
VC* - Variationally correct, but inplane deformation

neglected
QL - Quasi-linearised model, where nonlinear strain is

linearised
QL* - Quasi-linearised model, but inplane deformation

neglected

Numerical computations are performed systematically for
all versions of both elements. Results show that quasi-
linearisation reduces stiffness considerably, while neglect
of inplane displacement terms registers excessive nonlinear
stiffness. When both simplifications are introduced together
(QL*), there is a fortuitous cancellation of errors;  Fig. 3.1.1.1
shows a graphical representation of how the frequency ratio
varies with amplitude of vibration for the various versions
of a finite element model for the nonlinear vibration of a
simple-supported beam.

(G Prathap and S R Marur*; *CSS Foundation, Madurai)

3.1.2 Modelling of Smart Structures

Piezoelectric materials have tremendous potential in
vibration control applications as distributed sensors and
actuators. These can be either surface bonded or embedded
into composite structures. The modelling of and for active
vibration control has become a very important area in
aerospace applications. In this work, the active vibration
control of composite sandwich beams with distributed
piezoelectric extension-bending and shear actuators is
taken up.  The quasistatic equations of piezoelectricity
have been employed to derive a finite element model
capable of modell ing two different kinds of
piezoelastically-induced actuation in an adaptive
composite sandwich beam. The piezoelastic constants
couple with transverse electric field to develop
extension-bending and shear-induced actuation.

Numerical experiments show that the shear actuators
induce distributed forces/moments in a composite sandwich
beam in contrast to the extension-bending actuators, which
develop only concentrated forces/moments. A modal
control model is developed based on Linear Quadratic
Regulator which, in turn, is based on Independent Modal
Space Control approach (LQRC/IMSC). The modal gain of
each mode is computed and used to estimate the active
stiffness and the active damping introduced by both
actuation mechanisms. Dynamic response studies were
conducted to assess the performance of each type of
actuation in reducing the disturbance due to a sinusoidal
force. It was confirmed that the shear actuator was more
efficient than the extension-bending actuator in
actively controlling the vibration.  Figure 3.1.2.1
shows the first mode control with shear actuation and
extension-bending actuation for a composite sandwich

3. INDUSTRIAL COMPUTATIONAL MECHANICS

Fig. 3.1.1.1. Evaluation of finite element models for simple-supported

beam
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beam (configuration shown in top panels) and the bottom panels
indicate that the shear actuators are more efficient than the
extension-bending actuators in controlling the first elastic mode.

A four-node piezoelastic field-consistent plate element
based on the Mindlin-Reissner theory was developed to
study the influence of one and two dimensional piezoelectric
actuation on the active vibration control of smart panels.
Numerical experiments investigated the influence of
uniaxially polarised and biaxially polarised surface bonded
piezoelectric actuators on the static, dynamic and control
characteristics of aluminium panels with frequently
encountered boundary conditions. The uniaxially polarised
actuator is found to be more efficient in controlling the panel
vibration than the biaxially polarised one. Figure 3.1.2.2
shows the 1-D and 2-D piezoelectric influence on active
damping of smart panels for the clamped (C-C-C-C) and
cantilever (C-F-F-F) planforms.

(S Raja* and G Prathap; *NAL, Bangalore)

3.1.3 Error Analysis

The finite element method has proved itself to be a powerful
tool for generating approximate solutions of differential
equations by employing the principles of variational
calculus.  Though the method originated from the principles
of structural mechanics, it is now considered as a general
tool to handle the varied types of differential equations of
mathematical physics.  In principle, the method, as opposed
to the infinitesimal calculus, is designed to approximate the
exact solution of a differential equation in discrete, piecewise
domains, so that the infinitesimal element of calculus is
approached by convergence of results with decreasing
element size and consequently increasing discretization
density.  Error analysis of such methods is an important
exercise to ensure the quality of these approximate solutions.

It has been recently established (the stress correspondence
paradigm of Prathap) that finite element analysis is
effectively a process of finding the best-fit solutions to the

Fig. 3.1.2.1.  Composite sandwich beams first mode control with shear actuation and extension-bending actuation (former is shown in the left

panels and the latter in the right); top panels show the configurations and the bottom panels the establishment of control.
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analytical solutions of differential equations. In
computational structural mechanics, by best-fit, we mean
that the finite element procedure computes strains or
stresses which are least-squares approximations of the
actual state of strain or stress. This can be derived as an
orthogonality condition from the Hu-Washizu principle. Such
a principle also emerges from the projection theorems of
functional analysis, which show how the analytical solutions
are projected onto the approximate solution subspaces in
the Hilbert space. Interestingly, one often encounters
problems where this rule is seemingly violated. Work was
carried out to study this carefully. Studies with a model
boundary value problem with Dirichlet conditions (the axi-
symmetric Laplace equation corresponding to an
electromagnetic flux problem) show that the best-fit
interpretation of strain and stress recovery is valid if we
take into account the spurious stiffening effect produced
in the assembled discretised model. A priori error models
were developed to predict  that the actual computation using
assembled finite element equations would reflect an artificial
stiffening, which was confirmed during the numerical
experiments.  An interesting analogy of the electromagnetic
flux problem with the structural problem was seen. The
stiffening effect is attributed to an enhanced or distorted
flux, in analogy with the spurious enhanced support
reactions seen in finite element models in structural
mechanics.  Both the spurious and true support reactions
or fluxes satisfy overall equilibrium conditions.

(S Mukherjee* and G Prathap; *NAL, Bangalore)

3.2 Equivalent Continuum Analysis of
Jointed Rock

A simple practical method has been developed to
characterize the strength and stiffness of jointed rock
masses. Empirical relations for the strength and stiffness
of rock masses have been obtained based on the statistical
analysis of a large amount of experimental data. These
relations were used for developing a representation of the
jointed rock mass as an equivalent continuum; the effect
of joints in the rock mass is taken into account through a
joint factor. The equivalent continuum model has been
validated against experimental results for jointed rock
masses with different joint fabrics and joint orientations
and also with the results from explicit modeling of joints
using FEM. In the equivalent continuum approach, the
discontinuous rock body is modeled as an equivalent
continuum, the properties of each element defined in terms
of some combination of the properties of the intact rock
and those of the joints. In the case of explicit modeling,
the joints are explicitly represented by a joint element.
Comparison of the equivalent continuum results and the
explicit modeling results for a multiply jointed specimen of
Agra sandstone is given in Fig. 3.2.1.

The developed model has also been applied to calculate
the deformation around a large power station cavern in
rhyloite rock at 200 m depth. The cavern measured 28 m in
width, 51 m in height and 161 m in length. The amount of
jointed rock mass excavated due to opening of the cavern
was estimated to be about 1.9 x105 m3 of rock mass. Figure

Fig. 3.1.2.2.  1-D and 2-D piezoelectric influence on active damping of smart panels (C-C-C-C; C-F-F-F)
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3.2.2 shows the finite element mesh for the cavern and
the surrounding rock. Equivalent continuum analysis of
cavern excavation gives the relative displacement values
slightly lower than the observed values of relative
displacement in the field. The observed values of relative
displacement reduce sharply at a distance of 5 m to 20 m
from the cavern wall; the values of relative displacement
obtained using equivalent continuum analysis reduce
gradually at points away from the cavern wall. Overall, the
results match well within the limits of numerical and
experimental framework.

Equivalent continuum model  is able to give a fair estimate
of the rock mass behavior. The only input data required for
the analysis is the properties of intact rock and the joint
properties for estimating the joint factor. Shiobara power
cavern analysis using equivalent continuum approach
shows that the field problem analysis is simplified to a
large extent while, at the same time, giving a fair estimate
of the behavior of the surrounding jointed rock with
minimum input data.

(Sridevi Jade and T G Sitharam*; *IISc, Bangalore)

3.3  Moving Grid Methods for
Bioremediation

Previous work on bioremediation of the soil system at

Borhola Oil fields had shown that the bioremediation
process is a moving front that advances from the
macropores into the micropores of the soil aggregrates
along with the oxygen front. It was surmised that the model
itself can be made more efficient by converting it to a moving
boundary problem and employing adaptive moving grid
methods to track the moving front.

Moving grid methods are becoming increasingly popular
for solving several kinds of parabolic and hyperbolic partial
differential equations (PDEs) involving fine scale structures
such as steep moving fronts, emerging steep layers, pulses,
shocks etc. Moving grid methods use nonuniform space
grids and move the grid continuously in the space-time
domain.

A literature survey of available moving grid methods was
carried out. Three different moving grid methods were
identified for experimentation. The first method is a finite
difference method based on the Lagrangian description of
the PDEs and a smoothed equidistribution principle to
define the grid positions at each time; this is coupled to a
spatial discretization method which automatically
discretizes the spatial part of the user-defined PDEs
following the Method of Lines approach.

The second method is a gradient weighted moving finite
element method (GWMFE). The gradient weighting amounts
to the use of weighting functions in the finite element

Fig. 3.2.1. Comparison of FEM results where joints in a multiply jointed

specimen of Agra sandstone are explicitly represented and where

they have been approximated through an equivalent continuum model;

experimental results are also provided.

Fig. 3.2.2. Finite element mesh used for modelling a cavern and the

surrounding rock.



25

formulation that depend on the gradient ux of the solution.
GWMFE formulation is done by calculating the inner
products of the PDEs with piecewise linear basis and test
functions on a nonuniform grid. The GWMFE equations
are a discretized approximation to the force balance
equation; the right hand side represents the applied forces
on the manifold from the PDEs and the left hand side
represents viscous drag forces opposing the normal motion
of the manifold. The GWMFE manifold moves its nodes in
such a way that the forces when concentrated onto the
nodes, exactly balance at each node. The treatment results
in a more robust process in which the parameter tuning of
the weighted functions becomes easier and also less
critical.

The third method is an Adaptive Mesh Refinement
technique (AMR). The AMR approach refines in time as
well as space. The finer grids are placed adaptively in the
subregions that require a better resolution over the coarser
grid covering the region. The AMR method is implemented
recursively to the finest level. If the refinement factor
between a finer level and the next coarser level is r, then
the grids on the finer level will be advanced r  time steps
for each coarser time step. The regridding of the next level
includes computing the physical locations for each fine
grid and copying or injecting the solution from the old grid
to the new grid by interpolation. The output order forms a
W-cycle since the method replaces the coarse grid with its
immediate finer grids if it exists and also the method is
done recursively for all the grids; each of the subgrids is
referred to as a patch.

 The first method was applied to our bioremediation problem

and the results obtained are as shown in Fig. 3.3.1. The
results showed some deviation with the plots obtained using
the fixed grid method. Further studies have to be made to
determine the reasons for deviation when adapted to a
moving-grid interface. However the method showed promise
as the figure clearly shows the reduction of contaminant
concentration with the increase in biomass concentration
and, more importantly, application of moving-grid interface
to the bioremediation problem has significantly reduced
the computation time by several orders of magnitude.

The implementation of the other two moving grid methods
in the bioremediation problem are being studied and the
results will be reported later.

                      (A N Navaneeth and T R Krishna Mohan)

3.4 Oscillatory Rayleigh-Bénard
Convection in a Viscoelastic Liquid

Convective motion that arises when a thin layer of
viscoelastic fluid is heated from below (Rayleigh-Bénard
convection) is being investigated; we use Oldroyd B
constitutive equations to model the fluid. Besides the

Fig.  3.3.1. Evolution of concentrations during remediation process

computed using a finite difference moving grid method based on method

of lines.

Fig. 3.4.1. Space-time plot of v showing development of instability; (b)

is a continuation of (a) in time.

(b)

(a)
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Fig. 3.4.2. Streamlines are shown in the top panel and the subsequent panels show contours of the various indicated quantities at t= 9500s.

usual stationary convection that is observed in a
Newtonian fluid, it is now known that an oscillatory
convection can also be obtained in viscoelastic fluids
for certain values of the parameters. Unlike the
Newtonian fluids, there are two competing time scales
in viscoclastic fluids which make this possible. Back of
the envelope calculations had indicated that the
relaxation time required for oscillatory convection to
appear in viscoelastic fluids is typically of the order of
1s, which is quite large compared to the then known
values for these fluids. It was therefore believed that
oscillatory Rayleigh-Bénard convection cannot be
observed in viscoelastic fluids in realistic experimental
conditions. However, large values of the relaxation time

were recently measured for DNA suspensions, and,
subsequently, oscillatory Rayleigh-Bénard convection
was also observed in these suspensions in an annular
geometry.

Simulations of the viscoelastic Rayleigh-Benard
convection has been carried out at C-MMACS to
describe the development of the instability and the
resulting oscillatory motion within the convective cells.
Figure 3.4.1 shows the development of the instability
and Fig. 3.4.2 shows the convective flow between the
plates at a certain instant of time.

(A Kumar)


