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Sophisticated mathematical modelling aided by powerful computing and visualization has the 
potential to provide the cutting-edge to industry; generation of cost-effective solutions, process 
optimization and product design are some of the areas where modelling and simulation can play 
critical to enabling role. 

 
The Industrial Computational Mechanics group at C-MMACS has been utilizing and developing 
such tools as flow-consistent grid, finite element methods and others to address a wide range of 
engineering and industrial problems. Several basic results on Finite Element Analyses are 
reported in this issue. 
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3.1 Modelling of Smart Structural Systems

(a) Piezoelectric Finite Element Formulation using Higher
Order Theories

The classical theories (beam/plate) do not account for the
transverse shear deformation effect  and the first order shear
deformation theory approximately models the shear effect.
However, the transverse shear effects are accurately
modelled using higher order shear deformation theories. As
the higher order theories do not assume any shear correction
factor, they can be applied to both thin and moderately thick
laminates. Two higher order theories, namely
Lo-Christensen-Wu (LCW) theory and Reddy theory are
considered in the present formulation. Both LCW and Reddy
theory expand the in-plane displacement fields as cubic
functions; however the variation of transverse displacement
through the depth is assumed quadratic in the LCW theory
and a constant function in Reddy theory.

A beam  formulation is made using C0 continuity for LCW
theory and C1 continuity for Reddy theory. Further a two
noded Timoshenko beam element is developed and through
static analysis the merit of both the theories is assessed.
The beam formulation is being extended to incorporate the
electro-mechanical coupling, so that smart piezoelectric
composite beam structures can be modelled taking into
account the transverse shear effects accurately.

(V Senthilkumar and G Prathap)

(b) Bending Behaviour of Hybrid Actuated Piezoelectric
Sandwich Beams

Piezoelectric materials have tremendous potential in vibration
control applications as distributed sensors and actuators,
which can be either bonded or embedded into composite
substrate. However, to effectively use the distributed
actuation property (converse piezoelectric coupling), proper
modelling techniques and new smart structure concepts
must be developed. Such an attempt has been made at
C-MMACS by combining shear-bending and extension-
bending actuations to develop a piezoelectric hybrid
actuation. An orthorhombic crystal system of mm2 class
has five piezoelectric constants (d31, d32, d33, d15, d24) and
these constants couple the electric field with strain fields.
Based on the nature of induced strain, the actuation
mechanism may be classified into three types, namely
extension-bending actuation (d31, d32), shear bending-
actuation (d15, d24) and in-plane actuation (d33).

Fig 3.1 Sandwich Beams with Collocated and Non-collocated
            Actuators

A finite element formulation is developed to analyse the
hybrid actuated piezoelectric sandwich beam structures
(Fig 3.1). The hybrid actuation is modelled by incorporating
a transversely polarized, d31 activated extension bending
actuation (EBA: full length) lamina and an axially polarized,
d15 activated shear bending actuation (SBA: full length)
lamina (Fig 3.2).

Fig 3.2 Bending Behaviour of Clamped Free (C-F) Sandwich Beams

Further the bending behaviour of sandwich beams are
evaluated for various boundary conditions with segmented
EBA and SBA (Fig 3.3). The active stiffening effect is
assessed through bending deflection behaviour. Also, EBA
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and SBA are collocated as well as non-collocated along
the length of beam to see the combined actuation effort. It
is observed that in the clamped-free case, the actuation
effect is augmented with collocated EBA and SBA (Fig 3.4);
however this trend is not followed in the other cases.
Interestingly, the non-collocated EBA and SBA show better
combined actuation effort (Fig 3.4) for different boundary
conditions except in hinged-hinged case (Fig 3.5). As EBA
and SBA have some distinctive features, both can be
employed in a non-collocated fashion for better control action.

Fig 3.3 Bending Behaviour of Clamped-Clamped (C-C) Sandwich
Beams

Fig 3.4 Bending Behaviour of Sandwich  Beams with Collocated
Actuators

Fig 3.5 Bending Behaviour of Sandwich Beams with Non-Collocated
Acuators

                              (S Raja* and G Prathap)
                                                        *NAL,Bangalore

3.2 Error Analysis for Finite Element
      Elastostatics and Elastodynamics

Finite element analysis is used to solve complex differential
equations with varying domain properties and element
geometry for which there are no exact solutions. So, it is
important to estimate the errors in the approximate solutions
in order to ensure the quality of the approximation.

           fem strain vectors lie

            in this space

Fig 3.6 A geometric interpretation of the finite element strain vector

{ }ε   in subspace B, which is closest to the analytical element strain

vector { }ε

Work has been carried out to derive a priori estimates of
the element strains and errors in finite element elastostatic
and elastodynamic analysis. Earlier, studies were carried
out for one-dimensional finite element analysis of elastostatic
problems with uniform sectional properties. This has now
been extended to one-dimensional finite elements with
varying sectional properties and also for elstodynamic
problems.
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Here we derived the projection theorem for elastodynamics,
which states that

Total virtual work done by error of stress on approximate
strain
 = Total virtual work done by error of inertia force on
approximate displacement.

It is observed that finite element free vibration analysis
satisfies the interesting relation

                ,,                  are the exact and approximate finite element solutions for
modal displacements, modal strains and eigenvalues respectively

Approximate eigenvalues obtained from a variationally correct formulation lie in

the shaded portion of the Frequency-Error Hyperboloid

Fig 3.8 Geometric interpretation of eigenvalue analysis of the variationally
correct formulation using Frequency-Error Hyperboloid

Error of global strain energy = Error of global kinetic energy.

This can be interpreted as the energy error rule for
elastodynamics.

These theories reflect the principle behind the occurrence
of errors in free vibration problems. It has been observed
that in contrast to elastostatic problems, these theories
are valid only at the global level. Furthermore, a geometrical
interpretation of the errors associated with the computation
of approximate natural frequencies using the Rayleigh
Quotient has been derived in terms of a Frequency-Error
Hyperboloid (Fig 3.8).

It can be noted that for the ellipse AE on the X-Y  plane and
the portion of the hyperboloid connected to it, except for
the special point E, does not represent any real finite element

3.3 FEA for Elastostatic Problems

Using simple one-dimensional elements with uniform and
varying sectional properties, it has been shown with
complete mathematical rigor that finite element strains  and

stresses ( ε  σ   ) are orthogonal projections of the
corresponding analytical elements (ε  σ  ). The geometric
interpretation of finite element analysis for elastostatics is
shown in Fig 3.6. The interesting pathological problem of
shear locking has been examined using the function space
approach. The analysis results are presented graphically in
Fig 3.7. Interestingly, both locked and lock-free finite element
solutions satisfy the energy error rule for elastostatics.

Fig 3.7 Analysis of a cantilever beam with varying sectional properties
using a single linear two noded Timoshenko beam element subjected to
a point load at the free end

i.e. strain energy of the error = error in the strain energy

The rationale behind the practice of using reduced integration
for elimination of locking can be revealed explicitly using
the rigorous function space approach.

3.4 FEA for Elastodynamic Problems

In finite element analysis literature, there has been no
definitive or conclusive work on a priori error analysis for
elastodynamic problems in general, primarily due to the
complex operations involved in the extraction of eigenvalues.
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computation because of the absurdity of the situation on
the X-Y plane that for non-zero values of the displacement
error X, all the strain errors Z vanish. Thus the only feasible
surface that represents real computational results is that
portion of the first octant of the hyperboloid that lies bounded

by the straight line EF on one side on the 1/Y == ωω
plane, and the hyperbola EH on the other side on the X=0
plane. This shaded portion of the hyperboloid of points
representing finite element computation for elastodynamic
analysis can be called the Frequency-Error Hyperboloid.

Fig 3.9 Variation of eigenvalue with change in element length (2-element
case) for the fundamental mode of a fixed-fixed bar using both
consistent and lumped mass

The Frequency-Error Hyperboloid allows us to see
geometrically that for  arbitrary meshing and for a given
mode the approximate values for the eigenvalues computed
through variationally correct consistent mass formulations
are always higher than the exact values. This is not generally
true for the variationally incorrect lumped mass formulations
(Fig 3.5). In fact, lumped mass analysis can yield
eigenvalues which are either lower than, or higher than, or
equal to the exact eigenvalue according to the position of
the nodes (Fig 3.9). These predictions have been confirmed
with numerical experiments using the one dimensional finite
elements.

(P Jafarali, S Mukherjee* and G Prathap)
*NAL, Bangalore.

3.5  Generalization of the Projection
        Theorem for Finite Element Analysis

The studies so far on deriving error estimates have been
based on the interpretation that the finite element procedure
computes element strain and stress which are least squares
approximation of the actual state of stress or strain. Such
an interpretation also emerges from the projection theorem

of Functional analysis, which shows that the strains
computed by the displacement finite element procedure are
a best approximation of the true strain at a global level. A
closer observation of this best-fit paradigm at an element
level reveals that this is valid only if no spurious nodal forces
are excited due to the approximation inherent in the
discretisation process. This will happen in a class of problems
where artificial stiffening takes place due to the
discretisation. This violation in  the best-fit paradigm at an
element level was encountered when finite element method
was used to solve the Laplace equation with Dirichlet
boundary conditions, and also in case of  the Sturm Liouville
type differential equation with Dirichlet condition at one end
and Neumann condition at the other.

Fig 3.10 Pictorial explation of the violation of the best-fit paradigm. The
FEM solution εh in case of stiffened problems is the projection of the

analytical solution ε∗of the stiff system

In order to explain this deviation of the finite element solution
from the best-fit, a generalization of the projection theorem
at an element level has been proposed which states that
the best-fit paradigm for finite element analysis remains
valid at an element level only if no spurious nodal forces are
excited due to the inherent approximation from  the
discretisation process. For problems with spurious stiffening
the FEM solutionεh is still the best-fit to a modified analytical
solution ε* which takes into account this spurious stiffening
effect as shown in Fig 3.10.
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Fig 3.11 Potential gradients obtained by different methods for the Laplace
equation with Dirichlet boundary condition at both ends. The FEM solution
corresponding to the analytical solution ε is the best-fit to ε∗

Fig 3.11 validates this theorem for the Laplace equation
with Dirichlet boundary condition where it is seen that the
FEM solution corresponding  to the analytical solution e
deviates from the best-fit to ε, but is the best-fit approximation
to an analytical solution ε* obtained by replacing the
Dirichlet condition at one end  by the spurious enhanced
reaction arising from the discretization of the domain. Results
obtained for the Sturm-Liouville problem also validate the
generalized projection theorem.

It is concluded that the best-fit paradigm from the original
projection theorem  which is valid at a global level can also
be considered to be valid at an element level if the
discretisation process in finite element analysis conserves
the nodal reactions.

(K Sangeeta, S Mukherjee*  and G Prathap)
*NAL, Bangalore.


