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3.1 Variational correctness and Timoshenko 
beam finite element elastodynamics

The Timoshenko beam theory has features that 
make it an interesting case study for the 
examination of errors that appear when a finite 
element discretisation of its elastodynamics is 
made. Unlike the classical (or engineering) theory 
of beams, the Timoshenko theory incorporates 
shear flexibility and rotary inertia. As a 
consequence, it shows two distinct spectra, a 
basic flexural (or bending) dominated spectrum, 
and a shear dominated spectrum (Fig 3.1). Also, 
in the case of low order formulations (e.g. a two 
noded element), there is the possibility of locking, 
which has to be relieved using an extra-variational 
step such as reduced integration. Here, the error 
analysis implications for the two spectra, and that The frequencies obtained as the node is moved 
due to the extra-variational nature of reduced are as typically shown in Fig 3.2. If the formulation 
integration have been investigated. had been variationally correct, the frequencies 

would vary in the same convex “egg cup” profile 
for the Rayleigh-Ritz problem, as the nodal 
position is moved from a highly asymmetric mesh 
to a perfectly symmetric mesh. For a uniform 
beam with symmetric boundary conditions the 
globally optimal solution would occur when equal 
length elements are used, i.e. the mid node is 
placed exactly at the centre of the beam. 
Interestingly this is also the case where the global 
errors are equi-partitioned between the two 
elements. Any other nodal position, as common 
sense indicates, will be sub-optimal and would 
produce frequencies with higher errors.

This benchmark will now serve the very useful 
purpose of examining how this boundedness 
aspect will suffer if some kind of extra variational 
relaxation is introduced, either with the 
formulation of the stiffness matrix, or the mass 
matrix or both. In this investigation, we will confine 
attention to changes in the stiffness matrix due to 
the use of reduced integration. Therefore, a 
consistent mass matrix is used in all the The boundedness aspect of the variationally 
computations here.  correct finite element solution can be very 

elegantly demonstrated using a two element A “sweep test” result for eigenvalues of a thick 
moving node sweep test for a one-dimensional beam (L/d=10) is presented in Fig 3.3 of the shear 
problem. Fig 3.2 shows that the mid node can be spectra for locked and lock-free solutions. The 
located anywhere along the length. Each such locked solution, as it is variationally correct, is 
configuration gives one possible global test upper bound to the exact solution. But as we 
function from the function space. The global introduce the “variational crime” of reduced 
stiffness and mass matrices are now a function of integration in the shear energy terms the upper 
the node location. Each case would then give a bound nature of the shear spectra is lost.
Rayleigh- Ritz solution to the eigenvalue problem.

Fig 3.2 The two element moving node sweep test and 
the variation of natural frequency with respect to the 
position of the second node

Fig 3.1 Dispersion diagram for the hinged-hinged 
rd

Timoshenko beam for 3  mode- Comparison of 
Timoshenko Beam and Hybrid Beam finite 
element model with the exact.
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Fig 3.3 Variation of eigenvalues of the shear 
spectra with change in position of  the middle 
node for a hinged-hinged beam ( )L/d=10

Fig 3.4 First four modes of the axial dominated 
spectra of a  simply supported curved beam (... Axial 
mode; __ w mode; ---  mode)

Fig 3.5 First four modes of the flexural dominated 
spectra of a simply supported curved beam  (... Axial 
mode; __ w mode; ---  mode)

Fig 3.6 First four modes of the shear  dominated 
spectra of a simply supported curved beam  (... Axial 
mode; __ w mode; ---  mode)

θ

θ

θ

Above experiment confirms that the reduced 
integration technique is extra variational in nature 
and produces erroneous results in the shear 
dominated spectra. Also, it can be noted that for 
variationally incorrect formulations, the 
optimisation of eigenvalues by adaptive meshing 
may give misleading results. For the above 
example, in the case of reduced integration, the 
optimum solutions (where the slope of the “egg 
cup” profile is zero) are not the best solutions; in 
fact it even predicts the exact solution for a 
particular position of 2 node where the error due 
to mesh distortion compensates for the error due 
to the variational incorrectness introduced by 
reduced integration.

Curved beam analysis based on thick arch theory 
has its differential equation coupled with, axial, 
bending and shear strains. Hence, the free 
vibration analysis of the curved beams shows 
three distinct spectra, each dominated either in 
axial or in bending or in shear. Hardly any 
analytical solutions are reported in the literature, 
even for the simplest case of  hinged-roller 
support conditions, basically due to the 
complexity of the governing differential equations. 

In the present study the in-plane free vibration 
analysis of a hinged-roller circular arch has been 
carried out using a two noded shear flexible 

nd 

P Jafarali, S Mukherjee, G Prathap

3.2  Free vibration analysis of curved beams
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curved beam element. The shear flexible curved 
beam element is very much prone to membrane 
and shear locking, and for the present analysis 
these two locking problems have been eliminated 
using the field consistency approach. The first four 
mode shapes and the corresponding frequencies 
of axial, bending and shear spectra are presented 
in  Fig  3.4, 3.5 & 3.6 respectively.

Three types of beam elements which are 
frequently encountered in general purpose 
packages are critically evaluated from the 
dynamics point of view. We review critically the 
performance of an ingeniously designed hybrid 
beam element that uses a stiffness matrix based 
on Timoshenko theory but retains the mass matrix 
from classical beam theory. This clever 
engineering trick gives seemingly very accurate 
results in thin beam situations. However, the 
physics of thick beam behavior is consequently 
misrepresented. A careful study reveals that 
cancellation of errors is responsible for the 
apparent “accurate” performance.

Numerical experiments have been carried out for 
the calculation of eigenvalues (or frequencies) of 
free vibration of simply supported beam, for both 
thin beams (Length to depth ratio, ) and 
deep beams ( ) with . The hybrid 
element, which pretends to have the best of both 
worlds, offers accuracies that lie between that 
obtained from EB and TB models for thin beam. A 
careful study shows that seemingly accurate 
results from this element are due to cancellation of 
errors, and this has been demonstrated using the 
two node moving “sweep test” in Fig 3.7. For a 
deep beam, where comparisons are meaningful 
only against Timoshenko theory, it becomes 
obvious that the HB element is not acceptable. 

Since this hybrid element uses  functions for 
strain energy and  functions for mass matrix, the
effect of rotary inertia of these cross section of the 
beam is overlooked though the transverse shear 
deformation is included in the formulation and 
hence the physics of the problem is

 misrepresented in this element and this aspect is 
mostly overlooked by unwary production-run 
analysts. This is obvious from the exercise of 
investigating the second spectrum and 
fundamental thickness shear frequency. The HB 
formulation gives results which are completely at 
variance with that expected from Timoshenko 
theory. 

 

P Jafarali, S Mukherjee , G Prathap
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P Jafarali, L Chattopadhyay, G Prathap and 
S Rajendran 

 

The function space approach of a priori error 
analysis has been well established in finite 
element literature. However, a priori error 
analyses in eigenvalue problems are relatively 
scanty, basically due to the complexity involved in 
the eigenvalue analysis. Recent investigations in 
one dimensional finite element elastodynamics 
using the function space approach were 
successful in prediction of errors a priori. Prathap 
and Mukherjee re-derived the projection theorem 
and the energy-error rule for the finite element 
elastodynamics using the virtual work principle.

Here, an attempt has been made to extend these 
predictions for two dimensional free vibration 
problems. The QUAD4 finite element, based on 
the Mindlin's plate theory, has been developed 
and studied extensively using a priori error 

3.3 Error analysis of a hybrid beam element 
with Timoshenko stiffness and classical 
mass

3.4  A priori error analysis of QUAD4 element 
in elastodynamic problems

Fig 3.7 Variation of eigenvalues of the 
flexural spectra with change in position 
of  middle node for a hinged-hinged beam-
comparison of finite element EB, TB and HB 
model  (L/d=10)
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analysis. The locking experienced by the QUAD4 In the case of thick plate (L/d=10), the QUAD4 RI 
element with a rectangular mesh discretisation, element does not converge at O(h2). Interestingly 
has been eliminated using a selective reduced the variationally correct QUAD4 EC still converge 
integration for the shear energy, making the as predicted from  first principles; i.e. at the order 
element Field-Consistent (FC). It is well known of O(h2). This has been presented graphically in 
that the Reduced Integration (RI) fails in case of Fig 3.8  & 3. 9.
distorted mesh discretisation. It has been also 
shown earlier for the one dimensional 
Timoshenko beam elastodynamics that RI is 
variationally incorrect and will give inaccurate 
results in the adaptive mesh refinements 
techniques. 

The lock free Edge-Consistent (EC) element Despite satisfying completeness and continuity 
originally proposed by Prathap, is amenable to requirements isoparametric elements with 
any distorted form of discretisation. The multiple strain components are prone to suffer 
characteristics of this element is being studied for spurious stiffness properties and corresponding 
error analysis in elastodynamics. stress oscillations. This kind of error, commonly 

known as Locking is generally circumvented 
through reduced integration techniques applied to 
evaluate the element stiffness matrices. Using the 
field consistency paradigm one can view this 
technique as a means to suppress spurious, field-
inconsistent terms in the strain energy of the 
element.  Recently, the function space approach 
has been used to explain the origin and 
elimination of locking in simple Timoshenko beam 
elements. This approach substantiates the 
postulates of the field consistency paradigm. The 
objective of this work is to unify the arguments 
from function space approach and field-
consistency method to address locking in Mindlin-It has been observed from numerical experiments 
Plate element.that, for thin plates (L/d=100) the eigenvalues 

obtained through the QUAD4 RI and the QUAD4 Mindlin plate elements account for bending 
EC elements converge at the order of O(h2) for deformation and for transverse shear deformation  
modes where m = n,  and for other modes where so that the stiffness matrix [k] can be regarded as 
m is not equal to n, the eigenvalues converge at a being composed of a bending stiffness [k ] and a blower rate; this can be attributed to the dominance 

transverse shear stiffness [k ]. Locking of Mindlin sof twisting effect in these modes.  
plate elements caused by too many transverse 
shear constraints can be avoided by adopting a 
reduced or selective integration rule to generate 
[k]. 

The 4-noded bilinear element is the simplest 
element based on Mindlin theory. It was  
established that, a fully integrated bilinear 
element even in its  rectangular form  would lock  
when used to analyze thin plates. Locking was 
seen to vanish if a 2x2 Gauss rule was used to 

Evaluate  [k ] and a reduced 1-point rule was used b

to evaluate [k ]. An analysis of the element from s

Fig 3.8 Convergence plot for eigenvalues of a 
thick square plate using QUAD4 RI element

Fig 3.9 Convergence plot for eigenvalues of a 
thick square plate using QUAD4 EC element.

P Jafarali, R Muralikrishna, S Mukherjee and 
 G Prathap

3.5 Analysis  of  Mindlin plate element  from 
the function space approach 

Variation of Log(Error) with Log(mode number) for a SS Plate t=4
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Variation of Log(Error) with Log(mode number) for a SS Plate, t=4
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the function space approach  revealed a loss in 
dimension of the space  spanned by the column 
vectors of the  matrix arising from the strain -  
displacement relationship. This deficiency was 
attributed to the zero energy mechanisms of the 
bilinear element arising with reduced integration. 
 

As shown in the Table 3.1. Full integration is 
sufficient to avoid element mechanisms, but 
causes locking. A 1-point  integration of the 
bending and stiffness matrices eliminates locking 
but has 4 additional mechanisms. This is also 
revealed by the loss in dimension of the solution 
space (from 9 to 5)  spanned by the column 
vectors of the -matrix. A selective integration of 
the bending and stiffness matrix also eliminates 
locking but  brings in two mechanisms in addition 
to the usual three rigid body modes that may lead 
to the deterioration of the element performance.  
Thus both reduced and selective quadrature rules 
failed to eliminate locking  without introducing 
other deficiencies. An optimal integration strategy 
suggested by the field consistency method is to 
use a   2x2 Gauss rule  to evaluate  , a 1x2 
Gauss rule to evaluate  and a 2x1 Gauss rule to 
evaluate  An analysis of this element from 
function space approach reveals no reduction in 
the dimension of the space spanned by the 
column vectors of  the -matrix.  This suggests 
that the field consistency arguments lead to 
optimal integration strategies without introducing 
any zero energy mechanisms. This element 
would be the optimal rectangular bilinear element.  
This also suggests that  knowledge of the 
dimension of the solution space spanned by  the 
column vectors of  can be helpful in choosing an 
optimal integration strategy to get a lock free 
element. 

A finite element model using C continuity is 
developed to analyse the natural frequencies and 
the mode shapes of the laminated composite 
beam using LCW shear deformation theory.The 
finite element model consists of a two noded 
Timoshenko beam element.The present element 
has seven degrees of freedom per node. The 
classical EulerBernoulli theory assumes that the 
transverse normal to the neutral axis remains 
same during bending and after bending. It 
indicates that the transverse shear strain is zero. 
In the case of laminated composite beams, this 
theory fails to predict the behavior of the 
structures accurately. The advantage of the LCW 
theory over the first order shear deformation 
theory (FSDT) is that the first order theory 
assumes  transverse shear strain distribution is 
assumed to be constant through the beam 
thickness and thus the  FSDT requires a shear 
correction factor. But in the case of LCW theory, 
the shear correction factor is not required.

A program is developed in MATLAB platform to 
obtain the natural frequencies and mode 
shapes.The natural frequencies and mode 
shapes  of laminated cross-ply composite beams 
are studied. In the present study, the locked 
solution (exact integration) and the lock-free 
solution (reduced integration) are studied for 
various boundary conditions and compared with 
exact solution.

B

B

[ k ]

.

B

B

b

yz

yz

γ
γ

0

G Prathap and V Senthilkumar

The work initiated by the author at RRL -   
Trivandrum on the dynamics and rheology of 
periodically forced spheroids in simple shear flow 
has been continued. There are certain intrinsic 
factors to this problem which appear to give it 
greater significance than appears at first sight. 1). 
This problem is physically  accessible to suitable 
experiments. 2) This system is an example of a 
system in which a periodic forcing of the individual 
spheroids is related to a periodic forcing of the 
collective behaviour of  appropriate averages 
over the orientations of individual spheroids 

K  Sangeeta, S  Mukherjee and  G Prathap,

3.6 Free vibration analysis of composite 
beams using higher order shear deformation 
theory

3.6 The motion of periodically forced 
spheroids in simple shear flow

Table 3.1 Comparision  of element mechanisims and the
 loss of dimension of  B space for various integrations order 
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through a common periodic forcing term. It the present year the analysis has been extended 
appears, thus that this system can be considered to the case of periodically forced Brownian 
to be an idealized version of a general system particles using the technique developed by 
which appears to be relatively  common in which Asokan   et al.. We have observed chaos in the 
one is interested in the periodically forced normal stresses and the apparent viscosities and 
average behaviour of a large number of a quasiperiodic route to chaos as shown in 
individually periodically forced particles. During Fig.3.10 for the first normal stress difference and 

Fig. 3.10 Three dimensional embedding of the attractors reconstructed from the time series of the apparent viscosity 
and the first normal stress difference for various values of Pe (a measure of the strength of the Brownian force to the 
viscous force). (a) & (d) Pe =0.0; (b) & (e)  Pe=0.01; (c) & (f) Pe=0.1 showing a quasiperiodic transition to chaos as Pe 
decreases.



the apparent viscosity. We note that as the relative mixture due to quenching from a single point. The 
strength of the Brownian force to the shear force physics requires that phase pattern be symmetric, 
increases, the system behaviour becomes i.e. circular in two dimension. However simulation 
regular. The details of the investigation are by a conventional scheme does not give the 
reported in Asokan and Ramamohan. We are symmetric pattern. The problem is one of 
currently preparing a review of the results of our anisotropy in the conventional scheme. Using 
work in this area since 1994. isotropic scheme the symmetric pattern is easily 

obtained. This has great consequences on a 
K Asokan , T R Ramamohan general simulation. Experimentally possible 

phase pattern may never be obtained using 
conventional scheme.

Fig. 3.12 shows a simulation of dendritic Convent iona l  numer ica l  schemes are 
solidification. We have considered a six-fold directionally biased. New finite-differences, called
dendritic solidification, and look for the six-fold isotropic finite-differences have been developed. 
symmetric pattern in the simulation. It is found that Some application of numerical schemes based on 
while the symmetry is well preserved in the these finite-differences are shown.
simulation using the isotropic scheme, it is poorly 
captured in the simulation using the conventional 
scheme.

 

The study of normal modes in 1D mass-spring 
systems is central to our understanding of basic 
lattice dynamics starting from the initiation of a 
velocity perturbation imparted at a site to the 
distribution of the perturbation energy among the Fig. 3.11 shows a simulation of Cahn-Hilliard 
available modes of the system, i.e., of the equation governing phase separation in bimetallic 
equipartitioning of the available energy. Chains 
with combined harmonic and anharmonic springs 
have attracted significant attention since 1950s 
starting with the celebrated Fermi-Pasta-Ulam 
(FPU) problem. The study of the dynamics of such 
nonlinear chains has precipitated fundamental 
advances in our understanding of solitons and 
have led us to examine issues such as the 
equipartitioning of perturbation energy into 
available modes of the system and of the 
approach to equilibrium in systems with highly 
nonlinear interactions. 

In this work, we focus on systems which have no 
harmonic term in the interaction potential at all - 
meaning systems in which the masses do not 
necessarily move back and forth in rhythmic 
harmonic motion to produce phonons or sound 
waves. An example is that of repulsion between 
two elastic grains upon compression, which is 
completely nonlinear. Any perturbation in such 

3.7 Isotropic Numerical Schemes

3.8 The Quasi-Equilibrium Phase in Purely 
Nonlinear Chains with Boundaries

Fig 3 .11  A comparison of solutions of Cahn-Hilliard 
equation obtained using (a) Conventional scheme, 
and (b) isotropic scheme on a 100 X 100 grid with h 
= 0:01.

Fig 3.12  A comparison of the solidfication fronts 
obtained using the isotropic scheme, -----, and the 
conventional scheme, - - - - -. t = 400.

A Kumar
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energy transfer is often associated with the systems, irrespective of its magnitude, travels as 
presence of solitary waves and of solitary wave-shock waves (typically as a single large shock 
like objects in systems. wave followed by many tiny ones). It is 

conceivable that some long chain biological 
 When both V  and V are present in a system, the 1 2 molecules (such as proteins) may exhibit strongly 
harmonic term allows extended oscillations and nonlinear interactions albeit with a weak harmonic 
thus facilitates the sharing of modes between part to the interaction. 
particles, in addition to supporting the presence of 

We consider systems placed between rigid (or for solitary waves. Our simulations suggest that the 
that matter soft) boundaries as well as systems presence of V  tends to drive the system to a state 1

with periodic boundary conditions. The presence with equipartitioned energy at asymptotically 
of boundaries is best viewed as a way to alter the large times.
local conditions associated with the travel of some 

When a  = 0, a system only transfers energy from 1perturbation in the systems of interest and leads 
one mass to the next via solitary waves. The to significant modifications in the system 
solitary waves are always of fixed spatial width. dynamics. We keep our focus on perturbations 
This spatial width is controlled by b. When  b®¥, initiated by setting some velocity or velocities to 
the width of the solitary wave shrinks to the non-vanishing values at the initial instant. We do 
minimum physically meaningful width. The not consider perturbations initiated only by 
solitary waves that end up running through a stretching bonds, which may give rise to long-
bounded system continuously collide with each lived localized modes (intrinsic localized modes 
other. Unlike solitons, solitary waves may not ILMs). 
necessarily preserve themselves upon collision 

We start by considering a Hamiltonian of the with another solitary wave. The collision process 
following form, in our system is such that the waves end up 

leaving tiny residual solitary waves after a collision 
event and attenuates slightly in amplitude through 

 (3.3) the collision process. Eventually, the system 
drives itself into a state in which a large set of small 
amplitude solitary waves of various amplitude 

Where v  is the harmonic term and v  is the 1 2 distributions and speeds are found in the process 
anharmonic term. We consider our chain systems of constant modication as they collide. The 
to be finite, typically with N between 20 and 100. perturbation energy is never equipartitioned in 
The systems satisfy periodic boundary conditions these systems and the systems forever remain in 
or are placed between rigid walls. the “quasi-equilibrium" state, which is necessarily 

characterized by large fluctuations against what 
The parabolic potential introduced by the v  term 1 would have been the fluctuations in a state with 
allows the particles in the 1D chain to move back 

energy equipartitioning. Our simulations suggest 
and forth about their equilibrium positions with any 

that the final state of the system is independent of
of the allowed harmonic frequencies of the system 

initial velocity perturbation conditions (e.g., 
and thus share their energies with other masses in 

whether the velocity perturbation was imparted
the system. Given that b>2, the anharmonic to one particle at a desired position or to two 
potential, v , is softer than harmonic when the 2 chosen particles or more, etc.).
masses are slightly pushed into one another but 

In Fig 3.13, we present a description of the steeper than harmonic when two adjacent 
emergen3.16e of this equilibrium-like phase.  In particles get sufficiently close. Thus, when a 
Fig 3.13(a), the data suggest that the average particle starts closing in on a neighbor, initially the 
velocity of the particles remain time dependent at dynamics is slow, and then as the potential 
all times. in Fig. 3.13(b), we show that the velocity steepens, the rapidly developing repulsion gets 
distribution of the particles is Gaussian and, in Fig. the particles to abruptly recoil. The energy transfer 
3.13(c), we show that the velocity power spectrum during such processes is inevitably in a “bundled” 
of a typical particle decays logarithmically in form and unlike the harmonic case, there is less 
frequency in the nonlinear system, in contrast to oscillation of the particles due to v  . Bundled 2
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Fig 3.13  Nature of asymptotic state. The first 
panel (Figs. 3.13(a)) shows the spatial average 

2of v , which is again averaged over a time period 
T = 3000; 3000 samples each are shown, which 
have been taken from consecutive starting 
points, after 75000 time steps of integration. 
Onefinds bigger fluctuations for averages over 
T < 3000. Fig 3.13(b) shows that the velocity 
distribution of the particles is Gaussian in the 
quasi-equilibrium state. Fig.3.13(c) and 
Fig.3.16(d) present the velocity power spectrum 
of the 25th particle in the system for the purely 
quartic and the purely harmonic systems, 
respectively. Both panels are for periodic 
boundary conditions. The FFT is similar if it is 
taken over the maximum velocity in the chain at 
successive instants. Fig 1.13(e) shows the 
kinetic energy of each particle against time; the 
data conveys the rapidity with which the quasi-
equilibrium phase is reached.

remaining roughly flat in harmonic systems, which 
is shown in Fig 3.13(d). The power spectrum of the 
maximum velocity of the particles also follows the 
behavior shown in Fig 3.13 (c)-(d).  It may be 
noted that as system size grows, progressively 
small amplitude solitary waves are readily allowed 
in the system. Hence, one would expect that the 
log  logarithmic slope of the velocity power 
spectrum will become progressively flat. Indeed, 
this is what is found in preliminary studies to be 
reported elsewhere. In the limit of particle number 

going to ¥, the dierences between the quasi-
equilibrium state and the equipartitioned state 
become essentially  indistinguishable.

T R Krishna Mohan and Surajit Sen
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