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                Computational Industrial Mechanics Programme (CIMP)

Sophisticated mathematical modelling aided by powerful computing and visualization has the potential
to provide the cutting-edge to industry; generation of cost-effective solutions, process optimization and
product design are some of the areas where modelling and simulation can play critical to enabling role.
The C-MMACS Computational Industrial Mechanics Programme (CIMP) seeks to develop and apply
tools of mathematical modelling and computer simulation in diverse areas of engineering.

Highlights

The Year 2004-05 for CIMP is characterized by development and refinement of a number of theoretical and conceptual
issues in the areas of finite element analysis, elastodynamics, numerical algorithms and non-linear dynamics.

Analysis results with a quarter plate model of a simply supported plate subjected sinusoidal load: The  analytical solution
and the finite element solution using  the  BFS model  (a) variation of d2w/dx2. (b)variation of  d2w/dy2 . (c) variation of
2*d 2w/(dxdy).

Inside

      • Mesh Distortion Immunity of Finite Elements and the Best-Fit Paradigm

      • A Function Space Approach to study Rank Deficiency and Spurious Modes in Finite Elements.
      • Analysis of ACM and BFS Elements using the Function Space Approach
              Elastostatic Problems

              Elastodynamic Problems
      • Development of New Runge-Kutta Nystrom Methods
      • Dynamics and Rheology of Periodically Forced Suspensions
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   3.1   Mesh Distortion Immunity of Finite Elements
        and the Best-Fit Paradigm

Distortion of finite element meshes often lead to
poor results. One solution is to use unsymmetric
formulation to restore the mesh distortion immunity.
There are two separate sets of shape functions
that are used in such formulations. The first set of
shape functions (parametric shape functions)
should satisfy  the minimum inter- as well as intra-
element displacement continuity requirements and
the second set of shape functions(metric shape
functions) should satisfy all the linear and higher
order completeness requirements and has to
produce quadratic displacement field. Depending
on the shape function used, the elements are
classified into parametric (PP), metric (MM),
parametric-metric (PM) and metric-parametric
elements (MP). Numerical tests are carried out for
a single element three-noded bar element of length
L with nodes at  x1, x2 and x3  with uniform traction
load. We assume that the node x2 is not at the
centre of the bar so that the distortion parameter

Fig 3.1 The variation of stress in a fixed-free bar for uniformly
distributed load x2=0.45 for Parametric Model

∆  =  x2 – L/2. The numerical test results prove that
the PP and PM elements give the exact
displacements when there is no distortion (∆ = 0)
as shown in Table 3.1. When there is distortion,
only the PM formulation is insensitive to distortion.
The behaviour of the PP and PM elements are
explained using the best-fit paradigm.

Fig 3.1 shows that the strain/stress is computed
using the parametric transformation involving the
Jacobian J in the denominator; the variation of strain
thus computed is as shown by the thin solid line.
The dashed line indicates the extrapolation of stress
from the Gauss point values used for the 2-pt
Gaussian numerical integration of the PP stiffness
matrix. This is a closer approximation of the actual
variation of strain and explains why the 2-pt. rule is
favoured in most industry standard packages. Fig
3.2 shows the stress/strain recovered from the
displacements computed using the PM element for
the case with distortion. The PM formulation is
insensitive to mesh distortion because the strain
is in metric space (shown by the thick solid line).

G Prathap, V Senthilkumar and S Manju

Table 3.1  Deflections u2 and u3 for a single-element test of fixed-free bar with uniform traction load of q = 1

Fig 3.2  The variation of stress in a fixed-free bar for uniformly
distributed load when x2 =0.45 for Parametric-Metric Model

∆  = 0  ∆  =  -0.05  
Displacements 

PP PM  Exact  PP PM  Exac t 

u2  0.37500  0 .37500 0.37500  0 .34833 0 .34875 0 .34875 

u3  0.50000  0 .50000 0.50000  0 .50000 0 .50000 0 .50000 
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  3.2   A Function Space Approach to Study Rank
       Deficiency and Spurious Modes in Finite  Elements.

Finite elements based on isoparametric formulation
are known to suffer spurious stiffness properties
and corresponding stress oscillations, even when
care is taken to ensure that  completeness and
continuity requirements are enforced. This occurs
frequently when the physics of the problem requires
multiple strain components to be defined. This kind
of error, commonly known as locking, can be
circumvented by using reduced integration
techniques to evaluate the element stiffness
matrices instead of the full integration that is
mathematically prescribed. However, the reduced
integration technique itself can have a further
drawback - rank deficiency, which physically implies
that spurious energy modes (e.g., hourglass
modes) are introduced because of reduced
integration. Such  instability in an existing stiffness
matrix is generally detected by means of an
eigenvalue test. In this work  we have shown  that
a knowledge of the dimension of the solution space
B spanned by the column vectors of the strain-
displacement matrix can be used to identify the
instabilities arising in an element due to reduced/
selective integration techniques a priori, without
having to complete the element stiffness matrix
formulation and then test for zero eigenvalues. The
rank deficiency of two noded and three noded
Timoshenko beam elements,   quad4 element and
Mindlin plate element  have been examined for
various quadrature schemes. The results for the
QUAD4 element have been shown in Table 3.2.  This
element has 4 nodes with 2 dof at each node, so
that number of degrees of freedom per element
Nf  =8. The number of rigid body modes physically

permissible is three i.e. 3=p
rN . Therefore the

proper rank of the stiffness matrix Ke=5.  When a
2x2 Gauss quadrature is used to evaluate the
stiffness matrix  the dimension of B space is 5,
which is equal to the proper rank of Ke. In case of
one point Gauss quadrature the rank of Ke=3
indicating that the element has a rank deficiency 2.
The dimension of B* space is now 3 which is
obtained by finding the basis vectors of the [B*]
matrix. The [B*] matrix is obtained from the [B]
matrix by dropping the higher order polynomial

terms. This  suggests that the dimension of the
solution  space is a good measure to detect  rank
deficiency in an element stiffness matrix and can
be used for deciding  an optimal integration strategy
to eliminate locking. Integrating this test with a finite
element program, use of an  element that contains
a possible instability can be avoided and  the
accuracy of finite element analysis can be
increased.

Table  3.2 The results for the QUAD4 element

 Element  Integration   Rank of Ke       No. of         Dimensions
  type           rule         (no. of nonzero)  Mechanisms    B or B*

                       Full                  5                      0                   5

    Four         Reduced             3                    2                    3  noded
 (8 d.o.f)

K Sangeeta, S Mukherjee and G Prathap

 3.3   Analysis of ACM and BFS Elements using the
         Function Space Approach

3.3.1 Elastostatic Problems

The finite element formulations of Kirchhoff plate
bending model are quite complex. The complexity
arises due to the nature of the higher order partial
differential equation needed to describe the
problem. There are many formulations available in
the literature for Kirchhoff plate bending finite
element model. The most popular rectangular
Kirchhoff plate bending finite element models are
the ACM and BFS elements. The former element
has three degrees of freedom per node and the
latter has four degrees of freedom per node.

The Kirchhoff finite element plate bending model
requires C1 continuity, i.e., the transverse
displacement w and the normal slope w,n should
be continuous across the inter element boundary.

The BFS element meets all the continuity
requirements. However, the ACM element does not
ensure the continuity of the normal slope across
the inter element boundaries.

 

( ) *dimdim23,8 BBDeficiencyRankNN p
rf ≠===
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Fig 3.3  Analysis results with a quarter plate model of a simply
supported plate subjected sinusoidal load: The analytical
solution and the finite element solution using the BFS model
(a) variation of d2w/dx2 (b) variation of d2w/dy2(c) variation of
2*d2w/(dxdy).

Fig 3.4  Analysis results with a quarter plate model of a simply
supported plate subjected sinusoidal load: The analytical
solution and the finite element solution using the ACM model
(a) variation of d2w/dx2 (b) variation of d2w/dy2(c) variation of
2*d2w/(dxdy).
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Numerical experiment data

Table 3.3  The result of the numerical experiment

In the present work, we re-examine both the ACM
and BFS formulations from the variational calculus
point of view. It is observed that the BFS element
satisfies the virtual work principle at the element
level and hence, the finite element strain obtained
from the BFS model is the best-fit strain ε  at the
element level and also at the global level. It also
satisfies the energy error rule. However, the ACM
element violates the virtual work principle and the
finite element strain deviates from the best-fit
solution. The present study reveals that the
conforming requirement is another necessary
condition for the correct variational formulation of
the finite element model. It is worth noting here that,
a priori prediction of the finite element solution is
not possible for a variationally incorrect formulation.

A numerical experiment has been presented for the
simply supported plate with a sinusoidal load,
discretised with 4 elements of ACM and BFS finite
element model. The results are presented in Table
3.3. It  is shown here  that  each component  of the
finite element strain vector obtained from the BFS
model are individually the best fit to the
corresponding analytical element strain vector
component. It is also shown that the BFS model
satisfy the virtual work principle. However, the ACM
model violates the virtual work principle and hence
the best fit rule.

3.3.2  Elastodynamic Problems

In this study, we critically examine the variational
correctness of the Kirchhoff finite element
elastodynamic plate bending models. The ACM mocel

satisfies the elastodynamic energy error rule.
However, the ACM finite element elastodynamic
model does not satisfy the frequency-error-
hyperboloid equation. It is also observed in the
"sweep test"  that the  natural  frequencies obtained
using ACM model does not offer the upper
boundedness with exact solution. This is attributed
to the violation of the virtual work principle by the
ACM finite element model. The BFS model satisfy
the hyperboloid equation and also, the frequencies
obtained using the BFS model, are always above
the exact solution. The numerical results are
presented for the fundamental mode of the simply
supported plate in Table 3.4.

Table 3.4 Numerical results for the fundamental mode of
the simply supported plate

P Jafarali, R Muralikrishna, S Mukherjee and
G Prathap

3.4  Development of New Runge-Kutta Nystrom
        Methods

The solution of the initial value problems of second
order ordinary differential equations can often be
performed with fewer function evaluations by
Runge-Kutta Nystrom methods as compared to
Runge-Kutta methods. The Runge Kutta Nystrom
method for a second order ordinary differrential
equation can be written as:

Length of the plate Lx=40; L y=40;  Thickness t=0.4; Poisson’s ratio ν=0.3; Young’s 
modulus of elasticity E=2x105; Mass density ρ  =7850x10 -9  

   εε ,  

     (1) 

εε ,  

   (2) 

εε ,  

   (3) 

2εε −  

   (4) 

22 εε −  

     (5) 

εεε −,  

      (6) 

BSF 560.5226 558.0822 558.0822 2.4404 2.4404 0 

ACM 560.5226 671.9582 602.5109 27.459 -111.4355 69.4473 

 

 ( )uu,2, ωεε =  ( )uu,2, ωεε =  ( )uu ,2, ωεε =  

B F S 7 1. 3 6 2 0 7 1. 3 6 2 0 2 3 4. 0 4 6 8 

A C M 7 1.3 6 2      - 2 8 1 3. 1 8 6 8 
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The coefficients in the above equation are
determined to a given order by matching the Taylor
expansion of the exact solution and the numerical
solution. This yields a set of nonlinear algebraic
equations. Usually as we increase the number of
stages, the number of coefficients in the algorithm
increases faster than the number of equations the
coefficients have to satisfy (the order conditions).
A new Runge-Kutta Nystrom method is obtained
by choosing the free parameters  so that an optimal
method in some sense is obtained. We have
noticed that the order conditions are nonlinear and
hence multiple solutions of the equations may be
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obtained. One way of exciting the multiple solutions
is by varying the choice of the free parameter. We
have demonstrated that the choice of the free
parameters influences to a great extent the method
obtained. We have shown that depending on the
choice of the free parameter, the optimal method
in a given sense can be changed significantly.

T R Ramamohan, F O Otunta and S Imoni

3.5   Dynamics and Rheology of Periodically Forced
         Suspensions

We have continued our work on the rheology of
periodically forced suspensions. We have
formulated the problem of periodically forced
particles in time dependent uniform flow fields
including inertial effects. We are in the process of
developing software to model the motion of a
spherical particle under the action of an external
periodic force in a time dependent uniform flow field
including inertial effects. We have also prepared a
detailed review of our work in this area.

T R Ramamohan


