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COMPUTATIONAL INDUSTRIAL MECHANICS PROGRAMME

Sophisticated mathematical modelling aided by powerful computing and visualization has the
potential to provide the cutting-edge to industry; generation of cost-effective solutions, process
optimization and product design are some of the areas where modelling and simulation can play
critical to enabling role. The C-MMACS Computational Industrial Mechanics Programme (CIMP)
seeks to develop and apply tools of mathematical modelling and computer simulation in diverse
areas of engineering.
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3.1 Evidence of Some Determinism in
Microtremor Data

Waves emitted by seismic sources such as
explosions or earthquakes have been used to
measure the travel time of body waves, the
dispersion curves of surface waves and the
frequencies of the Earth’s normal modes.
Inversion of those measurements provide
some fundamental information about the
Earth’s interior and allows us to understand
the Earth’s structure both in terms of its
spherically symmetric stratification and in
terms of the three-dimensional and anisotropic
variations of seismic properties (Shapiro and
Campillo, 2004). Major research efforts are
being dedicated to two related questions. The
first question is whether nonlinear dynamics
can be used to gain a better understanding and
interpretation of observed complex dynamical
behavior. The second is whether nonlinear
dynamics can yield advantages in predicting
or controlling such time evolution. The time
evolution of a system property can be
measured by recording a time series. Nonlinear
time series techniques when applied to such
time series may provide partial answers to the
above questions.

The microtremor data used in this study were
collected from two different sources which
were located at a distance of around 30m
apart. These data were collected at a
sampling rate of 100 HZ using a Lennartz LE-
3D (5 sec) seismometer and a City-Shark-II
data acquisition system. In this study, we have
analyzed 35 time series data, 10 from the first
source and 25 from the second. Every file has
three component time series, vertical, north-
south and east-west. All the files are separated
into three individual files before analyzing them
one by one.

We applied several methods to verify the
presence of some determinism in the time
series data. These methods include the
autocorrelation of a time series, the recurrence

plot, the power spectrum, the nonlinear
prediction of the successive values and the
Hurst exponent. Some programs used in this
study are taken from the TISEAN software
package (Hegger et al., 1999).

Figure 3.1. Recurrence plot of the Vertical component of a typical
Microtremor data. A regular pattern in the figure indicates a
deterministic component in the data.

Recurrence analysis

Recurrence plots are a useful tool to identify
structure in a data set in a time resolved way
qualitatively. This can be intermittency (which
one detects also by direct inspection), the
temporary vicinity of a chaotic trajectory to an
unstable periodic orbit, or non-stationarity.
Recurrence Plots (RPs) were first described
in 1987 (Eckmann et al., 1987). With a RP,
one can detect hidden patterns and structural
changes in data or see similarities in patterns
across the time series under study. A
recurrence plot of the vertical component of a
typical time series data is plotted in figure 3.1
using VRA (Kononov, 2006). The recurrence
plot of this data is plotted using an embedding
dimension of 3 and time delay of 1, which are
in some sense the most appropriate values
for the data sets we have analyzed. A repetitive
formation of grey color squares in this plot
indicates that after a certain period some
pattern is found in the time series. This
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indicates the presence of some structure in
this data.

Time delay

The time delay was determined in three different
ways. First is the space time separation plot
(Provenzale et al., 1992). Using a space time
separation plot the value of the product of the
time delay and the embedding dimension came
out to be approximately eight. The second
method is an autocorrelation plot. The
minimum value of the delay (in an
autocorrelation plot) where the autocorrelation
of a given time series first goes to zero is a
value of the time delay for that time series.
Using the autocorrelation plot we obtained a
time delay of approximately 8. The third method
to estimate a time delay is by using time series
forecasting. In this method we predict values
of a time series in future. The combination
which yields the minimum prediction error
gives an estimate of the value of the time delay
and the embedding

Figure 3.2. Power spectrum of all three components of six microtremor data. An exponentially decaying powerspectrum indicates
either a linear noise process or a chaotic process. Periodic data will yield spikes in the figures.

dimension. The time delay calculated from the
prediction error of the time series came out to
be unity. However, it was noticed that a change
of time delay only leads to a very small change
in the output. Hence for all future tests we use
a time delay of unity.

Embedding Dimension

The embedding dimension is calculated using
the minimum prediction error of the time series.
We used different embedding dimensions to
calculate the prediction error. The minimum
error was achieved for all the time series at an
embedding dimension of 3 and time delay of
1. Therefore, the embedding dimension was
taken to be 3. Here, we used an embedding
dimension of 3 and time delay of 1 for the
analysis of all the time series.

Power Spectrum

The Power Spectrum plot gives an estimate
of the signal strength of the data at different
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frequencies. The strength of the signal at high
frequencies is usually considered as being due
to noise. In Figure 3.2 we have plotted the
power spectrum of all the three component
data (vertical, north-south and east-west) for
six time series taking a log scale on the vertical
axis (amplitude). Since high frequency data is
considered as a form of noise that means the
relative strength of the signal at high frequency
will decide how noisy the data is. In figures 3.2
(a), (b), (c) and (d) the power spectrum of
different microtremor data is plotted.

The power is increasing with increase in
frequency until a frequency of 0.1 after that it
decreases. At high frequencies the amplitude
saturates at a minimum value. This indicates
that data has an appreciable deterministic
component as the amplitude is different at
different frequencies. Figure 3.2 (e) and (f) give
the power spectrum of two different

Figure 3.3 Power spectrum of all three components of six microtremor data. An exponentially decaying powerspectrum indicates
either a linear noise process or a chaotic process. Periodic data will yield spikes in the figures.

microtremor data. The amplitude remains
almost the same for all frequencies. This
indicates that there is only weak determinism
in these two data sets. We note that the power
spectrum of almost all the time series is similar
to those shown in figures 3.2 (a), (b), (c) and
(d).

Autocorrelation

The autocorrelation for all the three axis data
was calculated and plotted in figure 3.3 for six
different microtremor data. Figure 3.3 (a) and
(b) indicate strong determinism since
autocorrelation is high for all delay and there is
little saturation. We note that the autocorrelation
goes to zero after a delay of 55 and 70 for figure
3.3 (a) and (b) respectively. Figure 3.3 (c) and
(d) are the autocorrelation plots of two different
microtremor data. The autocorrelation
fluctuates and then saturates at zero after
delay 100. This indicates appreciable
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determinism in the time series. We note here
that almost all the time series exhibit behaviour
similar to that shown in Figure 3.3 (c) and (d).
We also note that autocorrelation goes to zero
after a delay of 3 or 4. This yields a time delay
value of 3 for both these microtremor data.
Figure 3.3 (e) and 3(f) show the autocorrelation
plot of two other microtremor time series. In
figure 3.3 (e) the autocorrelation saturates after
delay 20. This indicates weak determinism in
the time series. Similarly figure 3.3 (f) also
indicates weak determinism in this
microtremor data.

Test for Chaos

In this method, the one-step ahead forecasting
error is computed as a function of the number
of nearest neighbors (k) used to form the
forecast.

In figure 3.4 the number of neighbors vs. the
prediction error of the vertical component of a
typical time series (10,000 data points) is
plotted. One step ahead prediction is
performed using a number of neighbors
ranging from 20 to 200 in steps of 10. Such an
error plot is repeated for all combinations of
time delay 1 to 3 and embedding dimension 3
to 5. Since the prediction error increases with
increase in number of neighbors it shows some
indications of chaos (For chaotic data the

Figure 3.4 Prediction error vs. number of neighbors plot of
vertical component of a typical microtremor data.

prediction error should increase exponentially
with increase in number of neighbors).

In this work we have applied some of the tools
of nonlinear time series analysis to
microtremor data to demonstrate the presence
of a deterministic component in almost all the
microtremor data we have analyzed.
Microtremor data sets were collected from two
sites in Ahmedabad, India. First linear tools
were used to visualize the data. These visual
tools indicated the presence of a pattern in the
time series. This suggests that the time series
is not completely white noise. Nonlinear tools
including nonlinear prediction were used to
verify that the data has some structure.

Vikas Krishnia, T R Ramamohan
and Imtiyaz A Parvez

3.2 The effect of Inertia on the
Dynamics of a Periodically Forced
Spherical Particle in a Quiescent
Fluid

We study the effect of inertia on the dynamics
of a periodically forced spherical particle in a
quiescent fluid. In this problem, we have initially
considered the spherical particle to be neutrally
buoyant. The only source for its motion is the
external periodic force applied onto the
spherical particle. We study the effects of both
convective inertia and unsteady inertia using
the expression for hydrodynamic force given
by Lovalenti and Brady (1993). We note that in
the expression given by Lovalenti and Brady
(1993), the inclusion of inertia results in
additional terms in the equation governing the
dynamics of the particle that represent a fading
memory for the entire history of the motion.
The inclusion of convective inertia in the low
Reynolds number limit makes the memory
term nonlinear.

In 2006-2007, we formulated the problem using
the expression of Lovalenti and Brady (1993).
The equations governing the motion of a
periodically forced spherical particle in a
quiescent fluid are:
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Where,

Here, Re represents the Reynolds Number,
Yp is the particle displacement, U-p is the
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,
Sl is the Strouhal Number, ReF is the amplitude
of the periodic forcing term.

We generated a few results. One of our main
results was that the particle had a drift velocity
and thus formed a solenoidal attractor. In 2007
we sent this result for publication to Physics
of Fluids. They questioned our result,
observing that it might be a numerical artifact.

Figure 3.5 Plots of the dimensionless velocity versus dimensionless position for different values of ReF and for Re = 0.01. The phase
space attractors undergo a reflection upon changing the direction of the initial motion of the particle.

However, we could not prove the validity of our
result as they were not explained by the physics
of the problem.

Current work

We evaluated the software carefully and
rectified it to obtain results to satisfy the
physics. We obtained a number of interesting
results. These results satisfied the earlier tests
which we had performed on the software and
also were physically explainable. Our earlier
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Figure 3.6 The Autocorrelation function plots for Re = 0.01.The time delay is obtained at the first zero of the autocorrelation function,
or as the value of the delay where autocorrelation reduces to 1/e of its initial value.

Figure 3.7 The Correlation Dimension plot for Re = 0.01. The embedding dimension is obtained by Taken’s theorem that it is atmost
(2d+1), where d is the correlation dimension. There exists a range of values of the neighborhood where the slope of the correlation
integral is approximately constant. The nearly constant slope of the correlation integral is an estimate of the correlation dimension.
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Table 3.1 This table shows the time delay, embedding dimension and the nearest integer to the correlation dimensions obtained for
Re = 0.01 and for various ReF ranging from 0.01 to 0.6. Such a table is obtained for the values of Re ranging from 0.01 to 0.6, here we
present just an example of Re = 0.01.

Re ReF One step prediction False nearest d2-plot Autocorrelation Average
error neighbors  function mutual information

Delay Embedding Embedding Correlation Delay Delay
dimension  dimension  dimension

0.01 0.01 5 6 6 2 8 2

0.01 0.02 7 4 8 2 3 4

0.01 0.03 6 5 8 2 3 3

0.01 0.04 9 10 7 2 3 4

0.01 0.05 1 2 7 2 3 3

0.01 0.1 3 6 7 2 8 3

0.01 0.15 2 5 8 2 4 3

0.01 0.2 5 6 8 4 3 3

0.01 0.25 6 5 8 4 3 3

0.01 0.3 6 4 7 3 3 3

0.01 0.35 9 3 7 4 3 4

0.01 0.4 7 7 8 3 3 4

0.01 0.45 6 3 9 3 3 3

0.01 0.5 9 7 8 3 3 3

0.01 0.55 5 10 8 4 2 3

0.01 0.6 6 3 8 3 3 3

results had shown the existence of a preferred
direction in the problem. This direction did not
depend on any physical aspect of the problem.
In our new simulations we noted that when we
reversed the direction of the initial motion, we
obtained a reflection of the attractor relative to
the velocity axis. This shows that there is a
direction in the problem and that it depends on
the direction of the initial motion. We present
here an example of the attractors obtained for
Re = 0.01 and for various ReF ranging from
0.01 to 0.6 in Figure 3.5. Figure 3.5 also shows
the effect of reversing the initial directions of
the force on the spherical particle. That is, the
figure shows the attractors for the two different
initial directions of the external force. Figure
3.5. shows the reflection of the two attractors
when the initial direction of the forces are in
opposite direction.

There is negligible drift in the motion of the
spherical particle. At low Reynolds numbers,

the spherical particle oscillates around a mean
position due to periodic forcing, and this is
shown in the phase plots of Figure 3.5.

We performed several tests on the time
series of displacement versus time, which
was obtained from the simulations. We
have attempted to test for deterministic
chaos in the time series. Using TISEAN, a
Nonlinear Time Series Analysis software by
Hegger et. al, we obtained the time delay and
embedding dimensions. The time delay was
estimated by the Autocorrelation and the
Average Mutual Information. The embedding
dimension was estimated using False Nearest
Neighbors and Correlation Dimension
methods. Figure 3.6 gives the autocorrelation
plots for Re = 0.01. Figure 3.7 shows the
Correlation Dimension (d2) plot for Re = 0.01.
The time delay and embedding dimension were
also obtained by the evaluation of minimum
error in one Step ahead prediction. Table 3.1
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shows the various estimates obtained of the
time delay and the embedding dimensions for
Re = 0.01. We have performed these analyses
on all the attractors and time series obtained
for Re ranging from 0.01 to 0.6. Finally all these
computations lead to the computation of a
Lyapunov exponent which is slightly greater
than zero, which shows the possibility of
existence of deterministic chaos in the system.

We are currently in the process of trying to
determine the route to chaos, if it exists in our
problem.

T R  Ramamohan, I S Shivakumara
K Madhukar

3.3 Finite Element Modeling of
Thermomechanical Behavior and
Microstructural Evolution in Steel

There is a strong requirement for a
comprehensive modelling approach in which
finite element analysis (FEA) of plastic
deformation and temperature during
thermomechanical processes of metals must
be closely coupled with microstructure
evolution model to allow prediction of evolving
microstructure and final mechanical properties.
Some recent efforts have been made by
researchers towards this objective but lot of
further work is still necessary in this subject.
Further, the details of model and computation

Figure 3.8  Effective strain in a cylindrical steel billet after die
displacement of 0.6Ho during spike forging of the billet in an
impression die containing a central cavity.

in these studies are not available in open
literature.

The overall objective of the proposed project
study is to perform a comprehensive study of
thermomechanical behavior (plastic
deformation and thermal analysis) of steel
during hot forming process using the finite
element method and integrate the
thermomechanical process model with a
microstructure evolution model to predict the
microstructure and final mechanical properties.

Figure 3.9 Effective strain in a steel strip after the strip has traveled
into the roll gap a distance of approximately 50% of contact
length between roll and strip.

A Finite element formulation for rigid plastic and
rigid-viscoplastic metal forming problems is
developed. An Arbitrary Lagrangian Euler
formulation is used to model large
deformations and mechanical contacts. Four-
node, eight noded and nine-noded quadrilateral
elements (both 2D and axisymmetric) were
formulated for the study. The flow behavior of
the metal is modeled as a function of strain
rate, strain and temperature.

The above formulation was implemented in a
versatile and user-friendly FEM computer code
“FACS” (having over one lakh statements)
developed by the author in visual C++
programming language during and after his
Ph.D. program. Both direct iteration method
and incremental-iterative Newton-Raphson
method were implemented for solving non-
linear equations. An appropriate remeshing
technique has been implemented to overcome
severe distortions in finite elements during
simulation steps. The code is also augmented
with graphics facilities for solid-model plotting,
mesh plotting and results plotting (contour as
well as vector plots) during each simulation
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step. The software has been validated by
comparing the results with those available in
literature for an example problem of upsetting
between flat dies.

Some example problems of axisymmetric
forging (i.e. simple upsetting of circular cylinder
between flat dies, upsetting with shaped
(inclined) dies and spike forging of cylindrical
billet in an impression die containing a central
cavity) and plane strain rolling of S45C
stainless steel are solved. Metal flow, effective
strain rate and effective strain distributions
inside the workpiece are calculated at each
simulation step. A few simulations results are
presented in Figures (3.8) and (3.9).

Surendra Kumar

3.4 Analysis of Impact response and
Damage in Laminated Composite Shell
by Finite Element Method

Resistance of the damage caused by low and
moderate velocity non-penetrating impact is an
important consideration in the design of fibre-
reinforced plastic laminated composite
structure. This type of damage in the form of
matrix cracking and delamination is often
internal and not visible but causes substantial
drops in the strength and stability of the
structure.

Figure 3.10 Centre displacement in graphite/epoxy cylindrical
shells ([904/08/904]) (a = b = 300 mm; R = 10a and R = a), with
clamped edges and impacted by blunt-ended steel cylinder of
nose radius 5 mm and mass 300 gm having initial velocity of 7
ms-1.

Although extensive literature are available
on impact response of laminated plates
and shells, those dealing with impact
damage on shells and curved laminated
panels are relatively sparse and in particular,
relatively few investigators have studied
geometrical non-linear effects on curved
laminated structures.

In this investigation, a non-linear finite element
analysis is carried out to predict impact
response     and      impact-induced damage in
curved composite laminate subjected to
transverse impact by a metallic impactor. An
eight-noded isoparametric quadrilateral shell
element incorporating geometrical non-linearity
due to large deflection is implemented based
on total Langragian approach. The non-linear
system of equations resulting from large
displacement formulation and non-linear
contact law are simultaneously solved using
Newton-Raphson incremental-iterative
method. Example problems of graphite/epoxy
cylindrically curved shell are considered with
parametric variations and influence of
geometrical non-linearity on the impact
response and resulting damage is
demonstrated.

Figure 3.11  Maximum strength ratio, em in bottom [904] ply of
[904/08/904] cylindrical shells (dimensions: a = b = 100 mm) hav-
ing curvature R/a = 1, with clamped edges and impacted by 200
gm mass at a velocity of 5 ms-1. ( me values: A = 0.2, B = 0.5, C =
1.0).
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The study also includes incorporation of
appropriate stiffness reduction of the damaged
region in the laminate as the solution
progresses with time.

Few important results are depicted in Figures
(3.10) to (3.12) with self-explanatory legends.

Surendra Kumar

3.5  Finite Element Modelling for
Dynamic Analysis of an Aircraft
Fuselage Structure

Improved mid-frequency structural vibration
and acoustic response predictions are required
for design optimization and noise control
applications in the aerospace. Advances in
computer technology provide the capability to
solve FE analyses of increasing complexity.
The ability to extend the valid frequency range
for FE based structural dynamic predictions
using detailed models of the components and
attachment interfaces has been examined.
Normal mode predictions for different finite
element representations of components and
assemblies are compared with experimental
results to assess the most accurate
techniques for modeling aircraft fuselage type
structures. The aim of the work is to Model the

Figure 3.12 Effect of material degradation on contact force in
graphite/epoxy cylindrical shell ([904/08/904] lay-up) (a = b = 100
mm; R = a; non-linear analysis), with clamped edges and im-
pacted by blunt-ended steel cylinder of nose radius 5 mm and
mass 200 gm having initial velocity of 5 ms-1.

Mode Finite element Modal test
ObtainedFrequency, Result frequency,

Hz Hz

7 54.648 50.82

8 54.648 51.176

9 57.688 53.462

10 57.688 54.287

11 110.73 100.146

12 110.73 102.123

13 148.59 141.375

14 148.59 142.348

15 161.92 152.39

16 161.92 152.411

17 172.43 160.102

18 172.43 161.829

19 198.93 183.553

20 198.93 204.342

parts of the fuselage structure and the fuselage
and obtain the normal mode predictions for
finite element representations of components
and assembly are compare with experimental
results to assess the most accurate
techniques for modeling aircraft fuselage
structures. Our interest has been focused on
stiffened aircraft fuselage structures(Figure
3.13). The structure is the Aluminum Testbed

Table 3.2 Experimental and numerical natural frequencies for the
Fuselage Structure

Figure 3.13  Fuselage Predicted mode shape at 286.70 Hz
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Cylinder (ATC). The cylindrical section of the
ATC is an all-aluminum structure that is 12 feet
in length and 4 feet in diameter. The shell
consists of a 0.040-inch thick skin that is
stiffened by 11 ring frames and 24 equally
spaced longitudinal stringers. Double lines of
rivets and epoxy are used to attach the skin to
the frames and stringers. The bay responses
are the focus of the fuselage panel correlation
efforts. Comparisons for the numerical and
experimental natural frequencies for the ATC
baseline cylinder are provided for the first fifteen
modes in Table 3.2. The local bay modes of
the Fuselage structure are Shown Below. The
table shows that they are in excellent
agreement with the experimental results.

P Rajesh, V Senthilkumar, G Prathap
and H V Lakshiminarayana

3.6 Vibration Analysis of Folded Plates

Folded plates or plate assemblies have wide
practical applications in aerospace, marine and
civil engineering due to substantial increase in
the stiffness, buckling and vibration capacities
of the folded plates (Figure 3.14) over their flat
form counterparts. A nine nodded plate element
with five degrees of freedom per node is
appended to an additional drilling degree of
freedom has been developed to study the free

Figure 3.14  Folded plate geometry

vibration characteristics of folded plates. A 6 X
6 transformation matrix has been derived to
transform the element stiffness and element
mass matrix before assembling the whole
system matrix. The element is based on first
order shear deformation theory with transverse
shear correction factor of 5/6. The frequencies
have been compared with available literature
and the new results are proposed to be used
for future validation purpose.

The free vibration frequencies of isotropic
single-fold are presented in table 3.3. The length
of the cantilever folded plate is 1.5m and
E=10.92e+9 N/m^2, v=0.3 and mass density
is 1000kg/m^3.

PlateDescription ModeNumber Mesh size Present QUAD9 Ritz Method FE Transfer Matrix
Method

Flat Plate 1 4x4 0.0200 0.0200 0.0201

2 0.0489 0.0492 0.0493

3 0.1230 0.1235 0.1234

4 0.1567 0.1566 0.1577

5 0.1784 0.1787 0.1796

One folded plate 90 1 4x2 0.0491 0.0491 0.0492

2 0.0972 0.0971 0.0977

3 0.1888 0.1786 0.1794

4 0.2188 0.2084 0.2101

5 0.3584 0.3558 0.3573

Table 3.3   Non dimensional frequencies

V Senthilkumar, S C Pradhan and G Prathap


