
COMPUTATIONAL MECHANICS

Sophisticated mathematical modelling aided by powerful computing and visualization has

the potential to provide the cutting-edge to industry; generation of cost-effective

solutions, process optimization and product design are some of the areas where modelling

and simulation can play critical to enabling role. The C-MMACS Computational Industrial

Mechanics Programme (CIMP) seeks to develop and apply tools of mathematical modelling

and computer simulation in diverse areas of engineering.
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3.1 The Dynamics and Rheology of Periodically Forced Spherical Particles

in a Quiescent Newtonian Fluid at Low Reynolds Numbers

The effects of both convective and unsteady inertia have been studied on the dynamics and

rheology of a dilute suspension of periodically forced neutrally buoyant spherical particles, at low

Reynolds numbers, in a quiescent Newtonian fluid. The inclusion of inertia results in additional

terms in the equation governing the dynamics of the particle that represent a fading memory for

the entire history of the motion. The inclusion of convective inertia in the low Reynolds number

limit makes the memory term nonlinear. Several tests were performed to show that the numerical

results for this problem are physically reasonable and correct. A perturbation analysis of the

problem yields strong evidence for the results of our simulations being correct. It is observed that

there is a preferred direction in this system which manifests itself in the properties of the solution.

This preferred direction is identified as the direction of the initial motion of the particle. We

present here, results of the behavior of various parameters with respect to Reynolds numbers

and the amplitude of the periodic force. These include phase space plots between particle

displacement and particle velocity and the variation of a rheological parameter, namely the

normal stress with respect to Reynolds number and the amplitude of the periodic force. We feel

that our results may be technologically important since the rheological parameter depends

strongly on controllable parameters such as the Reynolds number and the amplitude of the

periodic force. Further this system is one of the simplest systems whose rheology shows non-

Newtonian behavior, such as the presence of a normal stress.

In the current year we improved our simulation at low amplitudes of the periodic forcing, near the

region ReF ~ 0.01. We reduced the error term in the upper limit of the integral term of the

governing equation and have eliminated the discontinuities and kinks in the numerical solutions

in these regions. The drawback of this was that the numerical simulation consumed a lot of

computational time to generate the solution (almost 2 months on the SGI Altix 350 machine).

T R Ramamohan, K Madhukar and I S Shivakumara

Figure 3.1 The phase space attractor for ReF = 0.01 and Re = 0.5, the earlier result had kinks and discontinuities in this region.
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3.2 DynamicAnalysis of Double-Walled Carbon Nanotube

The present study deals with determination of the natural frequencies of a double walled carbon

nanotube under various boundary conditions. A simple and powerful semi-analytical method is

used for the evaluation of the frequencies using symbolic computations. Four different boundary

conditions are used such as clamped-clamped, clamped-free, simply supported and clamped-

hinged. The present approach is compared with Analytical, Bubnov-Galerkin and Petrov-

Galerkin methods available from literature. Though the approximated solutions are comparable

within error percentage, the present frequency results are more accurate, easy implementation,

and quick and effective determination of frequencies. It is observed that the inner tube

frequencies are small compared to higher magnitude of outer tube frequencies. The effect of

slenderness ratio length to diameter study shows that the frequencies of inner and outer tube are

decreasing with increasing slenderness ratio. Table 3.1 shows that the present semi-analytical

method determines identical results compared to exact solutions for the case of simply

supported boundary conditions. As the slenderness ratio (L/d) increase, the fundamental

frequency decreases. There is no analytical solution for the simply supported and clamped

boundary effect over the frequencies. However the present approach yields better results

compared to other methods. The Bubnov-Galerkin and Petrov-Galerkin method gave the

approximate range of the solution. The present method can be used as an alternative for the

analytical solution because of its accuracy with any boundary conditions.

Table 3.1 Fundamental frequencies for double-walled carbon nanotube with simply supported condition

V Senthilkumar

L/d 10 11 12 13 14 15 16 17 18 19 20

Present 0.46830 0.38707 0.32527 0.27716 0.23899 0.20819 0.18298 0.16209 0.14458 0.12976 0.11711

Exact 0.46830 0.38707 0.32527 0.27716 0.23899 0.20819 0.18298 0.16209 0.14458 0.12976 0.11711

Bubnov 0.47211 0.39021 0.32791 0.27942 0.24093 0.20988 0.18447 0.16341 0.14576 0.13082 0.11806

Duncan 0.46863 0.38734 0.32550 0.27736 0.23916 0.20834 0.18311 0.16221 0.14468 0.12986 0.11720

Petrov 0.46884 0.38751 0.32564 0.27748 0.23926 0.20843 0.18319 0.16228 0.14475 0.12991 0.11725

3.3 Axial VibrationAnalysis of Nanorods using Nonlocal Continuum Model

Nanotechnology is popular among the researchers due to the fact that small sized carbon

nanotubes have high mechanical strength. Molecular dynamics simulation is expensive and

difficult for large scale systems. Hence continuum models are used to study the behavior of

nanostructures. In the present study, the axial vibrations of nanorods are analyzed using

nonlocal continuum elastic models. The present work deals with the study of small scale effect

on vibration frequencies of nanorods. The use of simple semi-analytical methods calculates the

vibration frequencies of nanorods. Two different boundary conditions like clamped-clamped

(CC) and clamped-free (CF) are used to study the nonlocal effects of nanorods.
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The validity of nonlocal models is determined by matching the dispersion curves based on the

atomic models. When the absence of nonlocal parameters e0a = 0, the classic rod model results

are obtained. In the present approach, a semi-analytical numerical method called differential

transform method (DTM) is used for the nanorod vibration analysis. DTM was successfully

applied for nonlocal beam models and proved its capability of analyzing nanotubes. Continuum

models are solved for the appropriate boundary conditions by using the recurrence relation for

the non-trivial solution using symbolic tools of MATLAB. Here four decimal points precision is

considered for the convergence of the frequency value. The results are shown in Table 3.2. It has

been observed that the effect of nonlocal parameter over frequency can be analyzed using

e0a = 0 to 0.1 values and it is very clear that nonlocal parameter has affected the frequency when

the nonlocal model is considered. The present results are compared with analytical solutions

and a very good close agreement is observed between the analytical and the present semi-

analytical method.

Invention of carbon nanotubes heralded a new era in nanotechnology research. Because of their

high mechanical strength, electrical and thermal conductivity, carbon nanotubes are superior to

other materials. The classical continuum model has not account for nonlocal effects for the

structural behavior of nanotubes. So the nonlocal continuum theory was proposed by Eringen

for the analysis of nanotubes as an alternative method for molecular dynamics simulations

because of its easy analysis of implementation and little computational effort. The nonlocal

Timoshenko beam models are used to analyze the vibration behavior of carbon nanotubes with

shear deformation effects. The dynamic behavior of a single-walled carbon nanotube has been

studied with nonlocal continuum elasticity models using a differential transform method. By

using a Differential Transformation Method (DTM), the closed form series solution or an

approximate solution can be obtained for the differential equation. The small scale effect on

vibration frequency has been examined for the effects of transverse shear deformation using a

nonlocal Timoshenko model.

ω

V Senthilkumar

3.4 VibrationAnalysis of Single Walled Carbon Nanotube

Table 3.2  First five values of frequency of nanorod for CC and CF boundary conditions

Boundary

Condition
Present Exact

Clamped Clamped

9.8696 9.8696

39.4784 39.4784

88.8264 88.8264

157.9136 157.9136

246.7401 246.7401

Clamped Free

2.4674 2.4674

22.2066 22.2066

61.6850 61.6850

120.9026 120.9026

199.8594 199.8594
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Table: 3.3 Timoshenko Frequency for Simply Supported SWCNT for various nonlocal parameters

The nonlocal Timoshenko frequencies of the SWCNTs have been computed from the recursive

relation and the associated boundary conditions. A MATLAB computer code has been

developed to implement the differential transfer procedure technique and the vibration

frequency ( ) has been computed. In the computation of values of the SWCNT Young's

modulus, E=5.5 TPa, shear correction factor Ks = 0.563 and nanotube diameter as 0.678 nm

are considered. Sensitivity of these results to the number of terms employed in the DTM is

investigated. The convergence of the solutions of with various number of terms used in DTM

for simply supported (SS), clamped - clamped (CC), clamped - simply supported (CS) and

clamped - free (CF) boundary conditions are investigated. These results are compared with

corresponding exact solutions available in literature. It can be observed that the exact solutions

and the present DTM solutions are in very good agreement. From the Table 3.3, it has been

observed that the nonlocal parameter has influenced the Timoshenko frequency for the case of a

Simply Supported SWCNT.

The rheological properties of suspensions are important in design and in processes in many

industries (e.g., suspension coating and slurry transport, chemical process industries),

biological processes and in nature. At the early stage of investigation most attention was paid to

understand viscous suspensions at low particle Reynolds numbers and at dilute particle

concentration. Under dilute conditions, hydrodynamic interactions between particles can be

neglected and the suspension exhibits Newtonian rheology. Deviations from Newtonian

behavior are observed at higher solid volume fractions.

Different classes of macroscopic behaviour of particulate suspensions have been reviewed

under some generalized categories such as steady state behaviour, periodic behaviour, quasi-

periodic behaviour, and chaotic or stochastic behaviour that have either been observed

experimentally or predicted through simulation. A comprehensive study has also been carried

out on correlations between micro-dynamical properties and the macroscopic rheological

behaviour of the suspension. We highlight the effects of an external field, either a periodic force

or periodic shear and the effect of hydrodynamic interactions in the case of semi dilute

suspensions on rheological behaviour. In consideration of studying the effect of an external

periodic field on the macroscopic rheological behaviour of the suspension at higher Reynolds

number, we have critically reviewed different aspects of one promising computational fluid

dynamics technique, which we plan to use in our future work namely the lattice-Boltzmann

Ω Ω

Ω

V Senthilkumar,  S C Pradhan  and G Prathap

3.5 Rheology and Dynamics of Periodically Forced Suspension at Finite

Reynolds Number

0 0.1 0.3 0.5 1.0

L/d Exact Present Exact Present Exact Present Exact Present Exact Present

10 3.0929 3.0916 3.0243 3.0231 2.6538 2.6531 2.2867 2.2863 2.0106 2.0103
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method (LBM). Different states of particulate suspensions such as jamming, shear thinning, and

shear thickening where macroscopic rheological properties are functions of time but the function

of experimentally controlled parameters such as a constant shear rate have also been

summarized.

Our previous research on periodically forced particulate suspensions at zero Reynolds number

predicts that chaotic dynamics at the micro level shows chaotic rheological behaviour at macro

level. To the best of our knowledge this has been observed for the first time in the world. Here we

extend our previous research to finite Reynolds number. Such a study will yield insights on the

relationship between individual particle dynamics and collective macroscopic dynamics and

explore the possibility of developing technologically important smart fluids. The state of the art is

as follows. At first we have considered that the fluid drag acts as a point force on the particle of

finite size and 2D Lattice-Boltzmann method has been developed for simulating the fluid phase

and molecular dynamics (Newtonian mechanics) type modeling has been implemented and

coupled with the LBM to track the individual particle in a Lagrangian manner. To handle particle-

particle collisions we have implemented the collision algorithm using a link-list algorithm. The

fluid phase LBM code has been validated by running simulations for Couette and Poiseuille flow

as shown in Fig. 1. The next stage is to implement the LBM code for studying fully resolved fluid-

particle suspensions.

A new initiative is being taken up to develop software modules using the Lattice Boltzmann

Method (LBM) to study the behaviour of complex-fluids such as fluid-particle suspensions, flow

through deformable surfaces etc. Besides studying the dynamics and rheology of periodically

forced suspensions at finite Reynolds numbers issues related to fluid-structure interaction (FSI)

which occur in fluid flow through deformable surfaces will also be investigated by coupling the

LBM and finite element model (FEM). The long term objective is to develop multipurpose

software based on Lattice Boltzmann methods for solving fluid flow and heat transfer problems

in engineering and bio-fluidics applications.

Partha S Goswami and T R Ramamohan

Figure 3.2  Velocity evolution of the fluid phase with time for (a) Couette flow and (b) Poiseuille flow
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3.6 Homotopy Analysis Method Including Non Homogeneous Auxiliary

Linear Operator

The Homotopy analysis method does not require the existence of a small parameter, which is

required for perturbation techniques, and thus is valid for both weakly and strongly nonlinear

problems. It is difficult to determine analytical solutions to nonlinear equations, except in some

cases. Finding analytical solutions by homotopy analysis method is a popular choice because

implementation of this technique is relatively easy. The convergence of the solution series found

by any method is a primary requirement. In this method we can adjust and control the

convergence of solution series by a convergence control parameter h, present in the frame work

of HAM. For difficult problems there is a need to go to higher orders to get more accurate

solutions. This involves great time and computational cost. To reduce the computational cost

and time, we have included a non-homogeneous term in the auxiliary linear operator, so-that we

obtain the same or a more accurate solution in a fewer number of iterations.

To show the efficiency of this technique we present an analysis of the following problem. We also

prove a convergence theorem.

Consider the following non-linear differential equation:

The exact solution of the equation is .
The above equation is solved by using non-homogeneous auxiliary linear operator and

compared with Liao's (2003) solution.

The solutions obtained for different order of HAM approximations using both the schemes are

presented in the following table and corresponding h-curves are shown in Figure 3.3.

tanh(t)

( ) ( ) ( ) 0,00,1'
2

³==+ tVtVtV

Figure 3.3 Thick line v'' (0) Vs h and dotted line v''' (0) vs h, HAM solution up-to 10th order by (a) Liao's scheme, (b) our proposed

scheme.
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Table 3.4  We have taken convergence control parameter, h = -1 at all orders for both schemes.

t

5th order Liao’s

scheme

5th order

proposed

scheme

10th order

Liao’s scheme

10th order

proposed

scheme

exact

solution

1/4 0.24491 0.24490 0.24492 0.24492 0.24492

1/2 0.46190 0.46184 0.46212 0.46212 0.46212

3/4 0.63420 0.63414 0.63514 0.63515 0.63515

1 0.75964 0.75965 0.76156 0.76159 0.76159

3/2 0.90204 0.90225 0.90507 0.90513 0.90514

2 0.96120 0.96147 0.96395 0.96402 0.96403

5/2 0.98454 0.98477 0.98655 0.98661 0.98661

3 0.99367 0.99384 0.99501 0.99506 0.99505

4 0.99878 0.99885 0.99931 0.99933 0.99933

5 0.99970 0.99973 0.99990 0.99991 0.99991

10 1.00000 1.00000 1.00000 1.00000 1.00000

100 1.00000 1.00000 1.00000 1.00000 1.00000

Anant Kant Shukla and T R Ramamohan
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