Thu, May 08, 2025

CSIR Fourth Paradigm Institute

(Formerly CSIR Centre for Mathematical Modelling and Computer Simulation)

A constituent laboratory of Council of Scientific & Industrial Research (CSIR).

Ministry of Science and Technology, Government of India.

by Jagat Dwipendra Ray, M. Sithartha Muthu Vijayan,  and Walyeldeen Godah

 

The area of North-East India and Nepal Himalaya undergoes seasonal deformations due to the variation of surface mass loads induced mainly by annual monsoon precipitation. The present study focuses on comparing seasonal horizontal deformations of the Earth’s surface obtained over the area of North-East India and Nepal Himalaya using Global Positioning System (GPS) and the corresponding ones obtained from Gravity Recovery and Climate Experiment (GRACE) satellite mission data. Seasonal deformations of the Earth’s surface in horizontal components were determined using daily observations from 36 GPS stations located in North-East India and Nepal Himalaya and Release-05 GRACE-based Global Geopotential Models (GGMs). The consistency between these seasonal horizontal deformations was investigated using three statistical metrics, namely: the correlation, Weighted Root Mean Square (WRMS) reduction and Nash–Sutcliffe model Efficiency (NSE). The results obtained indicate that at nearly 89% of GPS stations investigated, positive correlation can be determined between seasonal deformations of the Earth’s surface in the north component obtained from GPS and the corresponding ones from GRACE data. The percentage of WRMS reductions computed from seasonal horizontal deformations of the Earth’s surface obtained using GPS and GRACE data reach ~ 18% and 0.71% in north and east components, respectively. Moreover, we obtain the median value of NSE almost 0.28 for north and − 0.01 for east components. The study finds that seasonal horizontal deformations in the area investigated are controlled by local tectonics, and realizes the need of a realistic Earth model comprising local crustal inhomogeneities and tectonic features for better constraining the surface deformations in this region.

 

Source: https://link.springer.com/article/10.1007/s40328-020-00331-3

Vision: 

To synergize the Transdisciplinary Pan-CSIR expertise and build a unified platform that embodies a rich set of big data enabling technologies and services with optimized performance to facilitate data intensive scientific discovery in the country.

Mission:

To Pioneer data driven interdisciplinary research in diverse fields through state-of-the-art data science ecosystem and impactful industrial partnerships for the betterment of Society.

Mandate: 

To develop cutting edge data science products as a horizontal across the CSIR Themes and position as an Institute of Excellence in Bigdata and Artificial Intelligence.

Student Programme for Advancement in Research Knowledge (SPARK)

SPARK is intended to provide a unique opportunity to bright and motivated students of reputed Universities to carry out their major project/thesis work and advance their research knowledge in mathematical modelling and simulation of complex systems. The programme is intended to increase the interaction between scientists and faculty members of academic institutes along with their students towards a long term research collaboration. Click here to apply for SPARK.

A FAQ on SPARK is available here.