Friday, January 28, 2022
Text Size

CSIR Fourth Paradigm Institute

(Formerly CSIR Centre for Mathematical Modelling and Computer Simulation)

A constituent laboratory of Council of Scientific & Industrial Research (CSIR).

Ministry of Science and Technology, Government of India.

CSIR-4PI welcomes corporates to invest CSR funds in R&D of institute – Please contact Group Leader

by T. C. Sunilkumar, Anil Earnest, Silpa K and Ronia Andrews

Unlike the other Himalayan plate boundary segments, the eastern Nepal to Bhutan Himalayan region is not known to have generated prominent shallow thrust faulting earthquakes, typical of the ongoing convergence. This region has unusual strike‐slip earthquake occurrences over the depth ranges of 40‐120 km, possibly indicating intraslab deformation. Here, we present for the first time a slip distribution model for the largest ever recorded intraslab strike‐slip earthquake in this region, the Mw 6.9 Sikkim event that occurred on 18th September 2011. Relying on kinematic source process modeling, our results indicate a NE‐SW trending, steeply dipping sinistral source zone within the underthrusting Indian slab. The rupture propagated radially, with a low rupture velocity of 1.7 km/s, breaking a large asperity of 20×20 km2 with a maximum slippage of 1.6 m. The rupture nucleated at a depth of 45 km and reached upper mantle depths. The computed co‐seismic stress drop value is 13.6 MPa. We suggest that most of the aftershocks occurred on the conjugate plane, possibly due to stress triggering. Stress inversion of focal mechanisms indicates a transpressive stress regime throughout the crust and pure strike‐slip regime in the upper mantle. We observed a unimodal distribution of earthquakes beneath the Higher Himalaya. This indicates a strong, brittle Indian slab and unravels a scenario of an eventual break‐up of the lithosphere; the key trigger might be variation in the convergence rates along the Himalayan arc.

Source:  and doi: 10.1029/2018jb015931 

Student Programme for Advancement in Research Knowledge (SPARK)

SPARK is intended to provide a unique opportunity to bright and motivated students of reputed Universities to carry out their major project/thesis work and advance their research knowledge in mathematical modelling and simulation of complex systems. The programme is intended to increase the interaction between scientists and faculty members of academic institutes along with their students towards a long term research collaboration. Click here to apply for SPARK.

A FAQ on SPARK is available here.


Vision and Mission

Our Vision: To provide modelling, simulation and data-intensive capability powered by high-performance computing and informatics research.

Our Mission: To develop knowledge products in the earth system and information sciences for societal benefit by exploiting modelling, simulation and data science capabilities. The mission statement thus encompasses the continuation of existing modelling and simulation work in earth sciences and places emphasis on exploiting data science capabilities across domains.

Our Mandate: To develop reliable knowledge products for decision support in Earth, Engineering and Information Sciences. To be the national leader in High-Performance Computing as service that will power modelling and informatics across CSIR.