Thu, Dec 26, 2024
Text Size

CSIR Fourth Paradigm Institute

(Formerly CSIR Centre for Mathematical Modelling and Computer Simulation)

A constituent laboratory of Council of Scientific & Industrial Research (CSIR).

Ministry of Science and Technology, Government of India.

by Randhir Singh, V Rakesh & A K Varma 

For the period 2001–2020, the interannual variability of the normalized difference vegetation index (NDVI) is investigated in connection to Indian summer monsoon rainfall (ISMR). According to Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data, the ISMR and the vegetative activity of the Indo-Gangetic plain (IGP) in the month of January show a significant negative association. We hypothesized that the January vegetation state affects the ISMR via a delayed hydrological response, in which the wet soil moisture anomaly formed throughout the winter to accommodate the water needs of intensive farming influences the ISMR. The soil moisture anomalies developed in the winter, particularly in the root zone, persisted throughout the summer. Evaporative cooling triggered by increasing soil moisture lowers the summer surface temperature across the IGP. The weakening of monsoon circulation as a result of the reduced intensity of land-sea temperature contrast led in rainfall suppression. Further investigation shows that moisture transport has increased significantly over the past two decades as a result of increasing westerly over the Arabian Sea, promoting rainfall over India. Agriculture activities, on the other hand, have resulted in greater vegetation in India’s northwest and IGP during the last two decades, which has a detrimental impact on rainfall processes. Rainfall appears to have been trendless during the last two decades as a result of these competing influences. With a lead time of 5 months, this association between January’s vegetation and ISMR could be one of the potential predictors of seasonal rainfall variability.