by Jagat Dwipendra Ray, M. Sithartha Muthu Vijayan, and Walyeldeen Godah
The area of North-East India and Nepal Himalaya undergoes seasonal deformations due to the variation of surface mass loads induced mainly by annual monsoon precipitation. The present study focuses on comparing seasonal horizontal deformations of the Earth’s surface obtained over the area of North-East India and Nepal Himalaya using Global Positioning System (GPS) and the corresponding ones obtained from Gravity Recovery and Climate Experiment (GRACE) satellite mission data. Seasonal deformations of the Earth’s surface in horizontal components were determined using daily observations from 36 GPS stations located in North-East India and Nepal Himalaya and Release-05 GRACE-based Global Geopotential Models (GGMs). The consistency between these seasonal horizontal deformations was investigated using three statistical metrics, namely: the correlation, Weighted Root Mean Square (WRMS) reduction and Nash–Sutcliffe model Efficiency (NSE). The results obtained indicate that at nearly 89% of GPS stations investigated, positive correlation can be determined between seasonal deformations of the Earth’s surface in the north component obtained from GPS and the corresponding ones from GRACE data. The percentage of WRMS reductions computed from seasonal horizontal deformations of the Earth’s surface obtained using GPS and GRACE data reach ~ 18% and 0.71% in north and east components, respectively. Moreover, we obtain the median value of NSE almost 0.28 for north and − 0.01 for east components. The study finds that seasonal horizontal deformations in the area investigated are controlled by local tectonics, and realizes the need of a realistic Earth model comprising local crustal inhomogeneities and tectonic features for better constraining the surface deformations in this region.
Source: https://link.springer.com/article/10.1007/s40328-020-00331-3
by V Anil Kumar and Debabrata Das
Multipath Transmission Control Protocol (MPTCP) is an innovative next-generation transport protocol standardized by the Internet Engineering Task Force (IETF) to overcome the single path limitation of the Transmission Control Protocol (TCP). MPTCP augments TCP with a new set of signaling options for seamless transmission and reception of application data across multiple interlinked TCP connections called subflows. In this paper, we focus on a new security concern associated with the signal exchanging process of MPTCP. To the best of our knowledge, for the first time, this paper exposes that MPTCP signal exchange scheme is vulnerable to a sophisticated packet spoofing technique, which we name as Data Sequence Signal (DSS) manipulation. We implement the vulnerability, create attack scenarios in Linux Kernel and conduct experiments over emulated testbed to demonstrate the existence of the vulnerability and means of exploiting it for powerful attacks. Our results show that DSS manipulation can be tactically exploited, on top of TCP optimistic ACKing, to generate non-responsive traffic like Denial-of-Service (DoS) attack flood. Particularly, we demonstrate two new adverse scenarios, where a MPTCP sender is forced to: (a) transmit at a rate significantly higher than the bottleneck link bandwidth, and (b) induce high intensity and harmful packet bursts at line-rate called Maliciously-induced-Bursts (MiBs). We also show that the non-responsive traffic resulting from the attack can suppress genuine congestion controlled traffic to the extent of causing DoS attack. We capture and analyze the dynamics of important MPTCP parameters, like send buffer occupancy of meta and subflow sockets, congestion window and flightsize to highlight the attack impact. DSS manipulation originates from a fundamental protocol design limitation rather than from any implementation flaw. We also propose a novel technique called data sequence map skipping for detection and countermeasure against DSS manipulation based attacks.
Source: https://doi.org/10.1016/j.cose.2021.102180