by S K Sahoo, Ajilesh P P, K C Gouda & Himesh S
Abstract
This study is about the impact assessment of different land-use data sets on the simulation of an Extreme Rainfall Event (ERE) which is one of the unusually rare events that occurred between 14th to 18th of June 2013 over Uttarakhand in India. In this work, high-resolution (2-km), time ensemble simulations are carried out using Weather Research and Forecasting model (WRFV3.5) with a 3-nest configuration. The sensitivity analysis of the model in simulating rainfall to different land-use data i.e. USGS-24 category (1992–93), ISRO (2004–05) and (2012–13) are carried out. Comparison of simulated rainfall which is averaged over the study region with that of IMD observed station data (averaged over 23 stations) showed that the simulations based on ISRO land-use data are comparatively more accurate with lesser simulation error when compared to simulations with USGS land-use data. The percentage of error in rainfall for the 3 simulations was found to be 24% (USGS), 9.5% (ISRO-2005) and 10% (ISRO-2013) with respect to the IMD observation. During the initial stage, the results have shown maximum convergence and vorticity with a strong updraft. The strong updraft, however, persisted throughout the simulation period. The increasing tendency of positive vorticity both in the simulation and observation suggests an intensification of cyclonic circulation in a vertical direction and hence creates instability in the boundary layer causing ERE over Uttarakhand. This study shows that ISRO land-use data is a relatively more realistic representation of the study region than the USGS data, and found to be useful in reducing the model error in the simulation of such rare events over this kind of mountainous region.
Source: https://link.springer.com/article/10.1007/s00704-020-03129-z
by Stella Jes Varghese, Sajani Surendran, Kavirajan Rajendran and Akio Kitoh
Abstract: Present-day simulations (1983–2003) of a global climate model of 60-km resolution with three deep convection schemes are analysed to find the best scheme for simulation of mean Indian summer monsoon rainfall (ISMR) and its variability. Multiforcing ensemble projections with the best scheme are carried out under multiple Representative Concentration Pathways (RCPs) (based on various socio-economic and technological development at the end of the century), viz. RCP2.6, RCP4.5, RCP6.0 and RCP8.5, forced with four patterns of future sea surface temperature (SST) change for each scenario; one with mean SST changes projected by 28 Coupled Model Intercomparison Project Phase-5 (CMIP5) models and the rest obtained from subgroups of CMIP5 models grouped through cluster analysis of tropical SST changes. These are analysed for future (2079–2099) changes in surface air temperature (Ts ) and rainfall which show overall increase over India except for rainfall reduction over Western Ghats. We find that combination of enhanced atmospheric water vapour content and increased vertically integrated low level moisture transport into the subcontinent as the major contributing factors for future intensification of ISMR. Extreme events show increase in warm days with significant increase in warm nights. Percentage of grid points showing increased extreme rainfall increases from low to high emission scenario. The high-resolution model enables to study projected changes over India at homogeneous zones level. The maximum increase in Ts and rainfall occurs over Western Himalaya and Northeast hilly region respectively. Consistent with future increase in Ts and rainfall, their extreme events also increase over all the homogeneous zones.
Source: http://link.springer.com/article/10.1007/s00382-019-05059-7