by Satya Ganesh Kakarla, Kantha Rao Bhimala, Madhusudhan Rao Kadiri, Sriram Kumaraswamy and Srinivasa Rao Mutheneni
Abstract: Dengue fever is mosquito borne viral disease caused by dengue virus and transmitted by Aedes mosquitoes. In recent years the dengue has spread rapidly to several regions and it becomes a major public health menace globally. Dengue transmission is strongly influenced by environmental factors such as temperature and rainfall. In the present study, a climate driven dengue model was developed and predicted areas vulnerable for dengue transmission under the present and future climate change scenarios in India. The study also projected the dengue distribution risk map using representative concentration pathways (RCP4.5 and RCP8.5) in India in 2018–2030 (forthcoming period), 2031–2050 (intermediate period) and 2051–2080 (long period).
The dengue cases assessed in India from 1998 to 2018 and found that the dengue transmission is gradually increasing year over year. The temperature data from 1980 to 2017 shows that, the mean temperatures are raising in the Southern region of India. During 2000–2017 periods the dengue transmission is steadily increasing across the India in compare with 1980–1999 periods. The dengue distribution risk is predicted and it is revealed that the coastal states have yearlong transmission possibility, but the high transmission potential is observed throughout the monsoon period. Due to the climate change, the expansion two more months of dengue transmission risk occurs in many regions of India. Both RCP4.5 and RCP8.5 scenarios revealed that dengue outbreaks might occur at larger volume in Southern, Eastern, and Central regions of India. Furthermore a sensitivity analysis was performed to explore the impact of climate change on dengue transmission. These results helps to suggest appropriate control measures should be implemented to limit the spread in future warmer climates. Besides these, a proper plan is required to mitigate greenhouse gas emissions to reduce the epidemic potential of dengue in India.
Source: https://www.sciencedirect.com/science/article/pii/S0048969720338584
by Ramees R. Mir & Imtiyaz A. Parvez
Abstract: This study presents estimates of bedrock level peak ground motion at 2346 sites on a regular grid of 0.2° × 0.2° in northwestern (NW) Himalaya from 543 simulated sources, using the stochastic finite-fault, dynamic corner frequency method, with particular emphasis on Kashmir Himalaya. The earthquake catalogue used for simulating synthetic seismograms is compiled by including both pre-instrumental and instrumental era earthquakes of magnitude Mw ≥ 5, dating back to 260 AD. Acceleration time series thus generated are then integrated to obtain velocity and displacement time series, which are all used to construct a suite of hazard maps of the region. Expected PGA values for the Kashmir Himalaya and Muzaffarabad are found to be ~ 0.3–0.5 g and for the epicentral region of the 1905 Kangra event, to be 0.35 g. These values are consistent with other reported results for these areas e.g., Khattri et al. (Tectonophysics 108:93–134, 1984) and Parvez et al. (J Seismol, 2017. https://doi.org/10.1007/s10950-017-9682-0). The PGA values estimated in this study are in general found to be higher than those implied by the official seismic zoning map of India produced by the Bureau of Indian Standards (BIS in Indian Standard criteria for earthquake resistant design of structures part 1 general provisions and buildings (Fifth Revision), vol 1, no 5. Indian Standard, 2002). Even the acceleration-derived intensities for most regions are found to be higher compared with those observed, which apparently is due to the use of a longer duration catalogue (260 AD–2016) for simulation not covered by the observed intensity catalogue and higher magnitude ascribed to historical events. Major events in Kashmir Himalayas, such as those of 1555, 1885 and 2005, are simulated individually to allow comparison with available results. Simulated pseudo-acceleration and velocity response spectra for three sites near the 2005 Kashmir earthquake for which site conditions were available (Okawa in Strong earthquake motion recordings during the Pakistan, 2005/10/8, Earthquake, 2005. https://iisee.kenken.go.jp) are compared with observed spectra. This study provides a first-order ground motion database for safe design of buildings and other infrastructure in the NW Himalayan region.
Source: https://link.springer.com/article/10.1007/s11069-020-04068-8